Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 168, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019852

RESUMO

Synthetic aperture radar (SAR) utilizes an aircraft-carried antenna to emit electromagnetic pulses and detect the returning echoes. As the aircraft travels across a designated area, it synthesizes a large virtual aperture to improve image resolution. Inspired by SAR, we introduce synthetic aperture ptycho-endoscopy (SAPE) for micro-endoscopic imaging beyond the diffraction limit. SAPE operates by hand-holding a lensless fiber bundle tip to record coherent diffraction patterns from specimens. The fiber cores at the distal tip modulate the diffracted wavefield within a confined area, emulating the role of the 'airborne antenna' in SAR. The handheld operation introduces positional shifts to the tip, analogous to the aircraft's movement. These shifts facilitate the acquisition of a ptychogram and synthesize a large virtual aperture extending beyond the bundle's physical limit. We mitigate the influences of hand motion and fiber bending through a low-rank spatiotemporal decomposition of the bundle's modulation profile. Our tests demonstrate the ability to resolve a 548-nm linewidth on a resolution target. The achieved space-bandwidth product is ~1.1 million effective pixels, representing a 36-fold increase compared to that of the original fiber bundle. Furthermore, SAPE's refocusing capability enables imaging over an extended depth of field exceeding 2 cm. The aperture synthesizing process in SAPE surpasses the diffraction limit set by the probe's maximum collection angle, opening new opportunities for both fiber-based and distal-chip endoscopy in applications such as medical diagnostics and industrial inspection.

2.
Opt Express ; 32(6): 8778-8790, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571127

RESUMO

Recent advancements in ptychography have demonstrated the potential of coded ptychography (CP) for high-resolution optical imaging in a lensless configuration. However, CP suffers imaging throughput limitations due to scanning inefficiencies. To address this, we propose what we believe is a novel 'fly-scan' scanning strategy utilizing two eccentric rotating mass (ERM) vibration motors for high-throughput coded ptychographic microscopy. The intrinsic continuity of the 'fly-scan' technique effectively eliminates the scanning overhead typically encountered during data acquisition. Additionally, its randomized scanning trajectory considerably reduces periodic artifacts in image reconstruction. We also developed what we believe to be a novel rolling-shutter distortion correction algorithm to fix the rolling-shutter effects. We built up a low-cost, DIY-made prototype platform and validated our approach with various samples including a resolution target, a quantitative phase target, a thick potato sample and biospecimens. The reported platform may offer a cost-effective and turnkey solution for high-throughput bio-imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA