Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 52(27): 9282-9293, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345704

RESUMO

The conversion of CO2 into value-added chemicals has become an imminent research topic and the cycloaddition of CO2 with a C1 resource to produce cyclic carbonates is a promising pathway for CO2 utilization. Herein, a series of POSS-based polyionic liquids (PILs) were synthesized by the copolymerization of octavinyl polyhedral oligomeric silsesquioxane (POSS) with an imidazolium ion linker. The prepared PILs have the characteristics of hydrogen bond donors, halogen atom sites, stable pore structures, and thermal stability, and are used as heterogeneous catalysts for the cycloaddition of epoxides with carbon dioxide. The effect of linkers on the cycloaddition is investigated by tuning the ratio of POSS units to imidazolium ions. Under the optimized conditions, the conversion of epichlorohydrin can reach 99.18% at atmospheric pressure with neither co-catalysts nor solvents. It is concluded that the reaction of the cycloaddition of epoxides with carbon dioxide follows pseudo-first-order kinetics. Moreover, the presence of the catalysis of PILs leads to a significant decrease in the activation energy barrier for cycloaddition. The catalyst can be facilely recovered due to its high stability, and only a slight decrease in conversion was observed after five successive runs. In addition, the mechanism of PILs catalyzing the cycloaddition reaction of epoxides with CO2 is proposed. This work not only provides a sustainable and green process for CO2 cycloaddition, but also highlights the potential of using PILs for CO2 utilization.

2.
Chempluschem ; 87(11): e202200324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36420867

RESUMO

The generation of cyclic carbonates by the cycloaddition of CO2 with epoxides is attractive in the industry, by which CO2 is efficiently used as C1 source. Herein, a series of catalysts were developed to efficient mediate the cycloaddition of CO2 with epoxides to generate carbonates. The catalysts were easily synthesized via the amine-formaldehyde condensation of ethidium bromide with a variety of linkers. The newly prepared heterogeneous catalysts have high thermal stability and degradation temperatures. The surface of the catalysts is smooth and spherical in shape. The effect of temperature, pressure, reaction time and catalyst dosage on the cycloaddition of CO2 with epoxide were investigated. The results show that the catalyst with 1,3,5-tris(4-formylphenyl)benzene as the linker can achieve 97.4 % conversion efficiency at the conditions of 100 °C, reaction time of 12 h, and the reaction pressure of 1.2 MPa in a solvent-free environment. Notably, the polymers serve as homogeneous catalysts during the reaction (reaction temperature above Tg ) and can be separated and recovered easily as homogeneous catalysts at room temperature. In addition, the catalyst is not only suitable for a wide range of epoxide substrates, but also can be recycled many times. Furthermore, DFT calculations show that the coordination between the electrophilic center of the catalyst and the epoxide reduces the energy barrier, and the reaction mechanism is proposed based on the reaction kinetic studies and DFT calculations.


Assuntos
Dióxido de Carbono , Compostos de Epóxi , Reação de Cicloadição , Solventes , Polímeros , Cinética , Carbonatos
3.
ISA Trans ; 129(Pt A): 472-484, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35067353

RESUMO

Accuracy and robust trajectory tracking for electro-hydraulic servo systems in the presence of load disturbances and model uncertainties are of great importance in many fields. In this work, a new adaptive sliding mode control method based on the RBF neural networks (SMC-RBF) is proposed to improve the performances of a robotic excavator. Model uncertainties and load disturbances of the electro-hydraulic servo system are approximated and compensated using the RBF neural networks. Adaptive mechanisms are designed to adjust the connection weights of the RBF neural networks in real time to guarantee the stability. A nonlinear term is introduced into the sliding mode to design an adaptive terminal sliding mode control structure to improve dynamic performances and the convergence speed. Moreover, a sliding mode chattering reduction method is proposed to suppress the chattering phenomenon. Three types of step, ramp and sine signals are used as the simulation reference trajectories to compare different controllers on a co-simulation platform. Experiments with leveling and triangle conditions are presented on a robotic excavator. Results show that the proposed SMC-RBF controller is superior to existing proportional integral derivative (PID) and sliding mode controller (SMC) in terms of tracking accuracy and disturbance rejection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA