RESUMO
Background: Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results: A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion: The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.
Assuntos
Neoplasias Ósseas , Ferroptose , Hipertermia Induzida , Osteossarcoma , Humanos , Ferro , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , OligopeptídeosRESUMO
Traumatic brain injury (TBI) accelerates fracture healing, but the underlying mechanism remains largely unknown. Accumulating evidence indicates that the central nervous system (CNS) plays a pivotal role in regulating immune system and skeletal homeostasis. However, the impact of CNS injury on hematopoiesis commitment was overlooked. Here, we found that the dramatically elevated sympathetic tone accompanied with TBI-accelerated fracture healing; chemical sympathectomy blocks TBI-induced fracture healing. TBI-induced hypersensitivity of adrenergic signaling promotes the proliferation of bone marrow hematopoietic stem cells (HSCs) and swiftly skews HSCs toward anti-inflammation myeloid cells within 14 days, which favor fracture healing. Knockout of ß3- or ß2-adrenergic receptor (AR) eliminate TBI-mediated anti-inflammation macrophage expansion and TBI-accelerated fracture healing. RNA sequencing of bone marrow cells revealed that Adrb2 and Adrb3 maintain proliferation and commitment of immune cells. Importantly, flow cytometry confirmed that deletion of ß2-AR inhibits M2 polarization of macrophages at 7th day and 14th day; and TBI-induced HSCs proliferation was impaired in ß3-AR knockout mice. Moreover, ß3- and ß2-AR agonists synergistically promote infiltration of M2 macrophages in callus and accelerate bone healing process. Thus, we conclude that TBI accelerates bone formation during early stage of fracture healing process by shaping the anti-inflammation environment in the bone marrow. These results implicate that the adrenergic signals could serve as potential targets for fracture management.
Assuntos
Lesões Encefálicas Traumáticas , Consolidação da Fratura , Camundongos , Animais , Consolidação da Fratura/genética , Medula Óssea , Mielopoese , Camundongos Knockout , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/complicações , AdrenérgicosRESUMO
During chemodynamic therapy (CDT), tumor cells can adapt to hydroxyl radical (ËOH) invasion by activating DNA damage repairing mechanisms such as initiating mutt homologue 1 (MTH1) to mitigate oxidation-induced DNA lesions. Therefore, a novel sequential nano-catalytic platform MCTP-FA was developed in which ultrasmall cerium oxide nanoparticle (CeO2 NP) decorated dendritic mesoporous silica NPs (DMSN NPs) were used as the core, and after encapsulation of MTH1 inhibitor TH588, folic acid-functionalized polydopamine (PDA) was coated on the periphery. Once endocytosed into the tumor, CeO2 with multivalent elements (Ce3+/4+) could transform H2O2 into highly toxic ËOH through a Fenton-like reaction to attack DNA as well as eliminating GSH through a redox reaction to amplify oxidative damage. Meanwhile, controllable release of TH588 hindered the MTH1-mediated damage repair process, further aggravating the oxidative damage of DNA. Thanks to the excellent photothermal performance of the PDA shell in the near-infrared (NIR) region, photothermal therapy (PTT) further improved the catalytic activity of Ce3+/4+. The therapeutic strategy of combining PTT, CDT, GSH-consumption and TH588-mediated amplification of DNA damage endows MCTP-FA with powerful tumor inhibition efficacy both in vitro and in vivo.
Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Neoplasias/tratamento farmacológico , HipertermiaRESUMO
Introduction: Mitochondria-targeted low-temperature photothermal therapy (LPTT) is a promising strategy that could maximize anticancer effects and overcome tumor thermal resistance. However, the successful synthesis of mitochondria-targeted nanodrug delivery system for LPTT still faces diverse challenges, such as laborious preparations processes, low drug-loading, and significant systemic toxicity from the carriers. Methods: In this study, we used the tumor-targeting folic acid (FA) and mitochondria-targeting berberine (BBR) derivatives (BD) co-modified polyethylene glycol (PEG)-decorated graphene oxide (GO) to synthesize a novel mitochondria-targeting nanocomposite (GO-PEG-FA/BD), which can effectively accumulate in mitochondria of the osteosarcoma (OS) cells and achieve enhanced mitochondria-targeted LPTT effects with minimal cell toxicity. The mitochondria-targeted LPTT effects were validated both in vitro and vivo. Results: In vitro experiments, the nanocomposites (GO-PEG-FA/BD) could eliminate membrane potential (ΔΨm), deprive the ATP of cancer cells, and increase the levels of reactive oxygen species (ROS), which ultimately induce oxidative stress damage. Furthermore, in vivo results showed that the enhanced mitochondria-targeted LPTT could exert an excellent anti-cancer effect with minimal toxicity. Discussion: Taken together, this study provides a practicable strategy to develop an ingenious nanoplatform for cancer synergetic therapy via mitochondria-targeted LPTT, which hold enormous potential for future clinical translation.
RESUMO
The immune microenvironment extensively participates in tumorigenesis as well as progression in osteosarcoma (OS). However, the landscape and dynamics of immune cells in OS are poorly characterized. By analyzing single-cell RNA sequencing (scRNA-seq) data, which characterize the transcription state at single-cell resolution, we produced an atlas of the immune microenvironment in OS. The results suggested that a cluster of regulatory dendritic cells (DCs) might shape the immunosuppressive microenvironment in OS by recruiting regulatory T cells. We also found that major histocompatibility complex class I (MHC-I) molecules were downregulated in cancer cells. The findings indicated a reduction in tumor immunogenicity in OS, which can be a potential mechanism of tumor immune escape. Of note, CD24 was identified as a novel "don't eat me" signal that contributed to the immune evasion of OS cells. Altogether, our findings provide insights into the immune landscape of OS, suggesting that myeloid-targeted immunotherapy could be a promising approach to treat OS.
RESUMO
Background: Although chemodynamic therapy (CDT) has attracted enormous attention in anti-tumor studies for converting endogenous hydrogen peroxide (H2O2) into toxic hydroxyl radicals (â¢OH) by Fenton-type reaction, the treating effects of using CDT alone is still unsatisfying. Recently, glucose oxidase (GOx) was reported to be co-delivered with Fenton agent for synergistic starvation therapy (ST) and CDT. However, the overexpressed glutathione (GSH) and hypoxia in tumor microenvironment (TME) restrict the therapeutic efficacy of ST/CDT. Methods and Results: In this work, a novel nanoplatform composed of GOx plus Fenton agent (Cu2+) encapsulated core and metformin (MET)-loaded manganese dioxide nanosheets (MNSs) shell was prepared and further functionalized by arginine-glycine-aspartate (RGD). With the RGD-mediated affinity with cancer cells, the nanocomposite (GOx-CuCaP@MNSs-MET@PEG-RGD, GCMMR) could accomplish targeting delivery and TME-activated release of cargos. The intracellular GSH was depleted by MnO2/Cu2+ and abundant H2O2 was generated along with the GOx-induced glucose deprivation, which process was further enhanced by MET-mediated hypoxia relief via inhibiting mitochondria-associated respiration. Subsequently generated â¢OH from Cu+-mediated Fenton-like reaction exerts severe intracellular oxidative stress and cause apoptosis. Moreover, significant inhibition of tumor growth was detected in a subcutaneous xenograft model of osteosarcoma (OS) after GCMMR treatment. Conclusion: The excellent therapeutic efficacy and biosafety of the nanoplatform were confirmed both in vitro and in vivo. Collectively, this study provides an appealing strategy with catalytic cascade enhancement on targeted ST/CDT for cancer treatment, especially for hypoxic solid tumors.
Assuntos
Neoplasias Ósseas , Metformina , Nanocompostos , Osteossarcoma , Humanos , Compostos de Manganês , Peróxido de Hidrogênio , Óxidos , Glutationa , Hipóxia , Respiração , Glucose Oxidase , Microambiente TumoralRESUMO
The synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted considerable attention in the field of cancer therapy because of its excellent anti-tumor effect. This work provides a novel pH/NIR responsive therapeutic nanoplatform, IrO2@ZIF-8/BSA-FA (Ce6), producing a synergistic effect of PTT-PDT in the treatment of osteosarcoma. Iridium dioxide nanoparticles (IrO2 NPs) with exceptional catalase-like activity and PTT effects were synthesized by a hydrolysis method and decorated with zeolitic imidazolate framework-8 (ZIF-8) shell layer to promote the physical absorption of Chlorin e6 (Ce6), and further functionalized with bovine serum albumin-folate acid (BSA-FA) for targeting tumor cells. The IrO2@ZIF-8/BSA-FA nanocomposite indicated an outstanding photothermal heating conversion efficiency of 62.1% upon laser irradiation. In addition, the Ce6 loading endows nanoplatform with the capability to induce cell apoptosis under 660 nm near-infrared (NIR) laser irradiation through a reactive oxygen species (ROS)-mediated mechanism. It was further testified that IrO2@ZIF-8/BSA-FA can function as a catalase and convert the endogenous hydrogen peroxide (H2O2) into oxygen (O2) to improve the local oxygen pressure under the acidic tumor microenvironment (TME), which could subsequently amplified PDT-mediated ROS cell-killing performance via relieving hypoxia microenvironment of tumor. Both in vitro and in vivo experimental results indicated that the nanomaterials were good biocompatibility, and could remarkably achieve tumor-specific and enhanced combination therapy outcomes as compared with the corresponding PTT or PDT monotherapy. Taken together, this work holds great potential to design an intelligent multifunctional therapeutic nanoplatform for cancer therapy.
Assuntos
Estruturas Metalorgânicas , Nanocompostos , Nanopartículas , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Catalase , Linhagem Celular Tumoral , Ácido Fólico/metabolismo , Humanos , Peróxido de Hidrogênio , Estruturas Metalorgânicas/síntese química , Neoplasias/tratamento farmacológico , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Soroalbumina Bovina , Triazenos , Microambiente TumoralRESUMO
Photodynamic therapy (PDT) is a promising therapeutic strategy for tumor ablation by generating highly toxic reactive oxygen species (ROS) to damage DNA and other biomacromolecules. However, the local hypoxic microenvironment of the tumor and the presence of ROS-defensing system, such as the mobilization of mutt homolog 1 (MTH1) to sanitize ROS-oxidized nucleotide pool, severely limit the efficiency of PDT. Therefore, a novel tumor ablation strategy was developed that not only focused on the enhancement of ROS generation but also weakened the ROS-defensing system by inhibiting MTH1 enzyme activity. In our work, a simple one-step reduction approach was applied to enable platinum nanoparticles (Pt NPs) with catalase activity to grow in situ in the nanochannels of mesoporous silica nanoparticles (MSNs). After physical encapsulation of photosensitizer chlorin e6 (Ce6) and MTH1 inhibitor TH588, the drug loading nanoplatform was modified with an arginine-glycine-aspartic acid (RGD) functionalized liposome shell, resulting in the fabrication of amplified oxidative damage nanoplatform MSN-Pt@Ce6/TH588 @Liposome-RGD (MPCT@Li-R). The prepared MPCT@Li-R NPs could continuously catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen (O2) in tumor, thus promoting the generation of singlet oxygen during PDT process for improved oxidative damage of bases. Simultaneously, acid responsive released TH588 hindered MTH1-mediated scavenging of oxidative bases, further aggravating DNA oxidative damage. Consequently, this cascade therapy strategy exhibited excellent tumor suppression efficiency both in vitro and in vivo.
Assuntos
Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Neoplasias , Fotoquimioterapia , Arginina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Ácido Aspártico/uso terapêutico , Catalase/metabolismo , Linhagem Celular Tumoral , Glicina , Humanos , Peróxido de Hidrogênio/farmacologia , Lipossomos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nucleotídeos , Oligopeptídeos/farmacologia , Estresse Oxidativo , Oxigênio/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Platina/farmacologia , Platina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/farmacologia , Oxigênio SingleteRESUMO
BACKGROUND: Existing therapeutic efficacy of chemotherapy and photodynamic therapy (PDT) is always affected by some resistance factors from tumour environment (TME), such as hypoxia and the antioxidant defense system. PURPOSE: This study aims at developing a cascaded intelligent multifunctional nanoplatforms to modulate the TME resistance for synergistically enhanced chemo- and photodynamic therapies. METHODS: In this study, we synthesised hollow manganese dioxide nanoparticles (HMDNs) loaded with the hydrophilic chemotherapeutic drug (acriflavine, ACF) and the hydrophobic photosensitizer (chlorine6, Ce6), which was further encapsulated by pH-sensitive liposome to form core-shell nanocomposite, with surface modified with arginine-glycine-aspartic acid (RGD) peptide to achieve tumour targeting. RESULTS: After uptake by tumour cells, the liposome shell was rapidly degraded by the low pH, and the inner core could be released from the liposome. Then, the released HMDNs/ACF/Ce6 would be dissociated by low pH and high levels of intracellular GSH within TME to release encapsulated drugs, thereby resulting in synergistic effects of chemotherapy and PDT. Meanwhile, the released ACF could bind with HIF-1a and then inhibit the expression levels of HIF-1's downstream signalling molecules P-gp and VEGF, which could further strengthen the antitumor effects. As a result, HMDNs/ACF/Ce6@Lipo-RGD NPs with laser irradiation exhibited superior anti-tumour therapeutic efficiency.
Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Lipossomos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Microambiente TumoralRESUMO
BACKGROUND: Although lower temperature (< 45 °C) photothermal therapy (LPTT) have attracted enormous attention in cancer therapy, the therapeutic effect is still unsatisfying when applying LPTT alone. Therefore, combining with other therapies is urgently needed to improve the therapeutic effect of LPTT. Recently reported oxygen-irrelevant free radicals based thermodynamic therapy (TDT) exhibit promising potential for hypoxic tumor treatment. However, overexpression of glutathione (GSH) in cancer cells would potently scavenge the free radicals before their arrival to the specific site and dramatically diminish the therapeutic efficacy. METHODS AND RESULTS: In this work, a core-shell nanoplatform with an appropriate size composed of arginine-glycine-aspartate (RGD) functioned polydopamine (PDA) as a shell and a triphenylphosphonium (TPP) modified hollow mesoporous manganese dioxide (H-mMnO2) as a core was designed and fabricated for the first time. This nanostructure endows a size-controllable hollow cavity mMnO2 and thickness-tunable PDA layers, which effectively prevented the pre-matured release of encapsulated azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIBI) and revealed pH/NIR dual-responsive release performance. With the mitochondria-targeting ability of TPP, the smart nanocomposites (AIBI@H-mMnO2-TPP@PDA-RGD, AHTPR) could efficiently induce mitochondrial associated apoptosis in cancer cells at relatively low temperatures (< 45 °C) via selectively releasing oxygen-irrelevant free radicals in mitochondria and facilitating the depletion of intracellular GSH, exhibiting the advantages of mitochondria-targeted LPTT/TDT. More importantly, remarkable inhibition of tumor growth was observed in a subcutaneous xenograft model of osteosarcoma (OS) with negligible side effects. CONCLUSIONS: The synergistic therapy efficacy was confirmed by effectively inducing cancer cell death in vitro and completely eradicating the tumors in vivo. Additionally, the excellent biosafety and biocompatibility of the nanoplatforms were confirmed both in vitro and in vivo. Taken together, the current study provides a novel paradigm toward oxygen-independent free-radical-based cancer therapy, especially for the treatment of hypoxic solid tumors.
Assuntos
Radicais Livres , Nanopartículas Metálicas/química , Mitocôndrias , Sistemas de Liberação de Fármacos por Nanopartículas , Terapia Fototérmica , Animais , Compostos Azo/química , Linhagem Celular Tumoral , Temperatura Baixa , Feminino , Radicais Livres/análise , Radicais Livres/metabolismo , Humanos , Imidazóis/química , Compostos de Manganês/química , Camundongos , Camundongos Nus , Mitocôndrias/química , Mitocôndrias/metabolismo , Óxidos/químicaRESUMO
BACKGROUND: Several studies have demonstrated a relationship between the posterior tibial slope (PTS) and meniscal tears in adults. However, little is known about the association between the PTS of the adolescents and medial meniscal tears (MMT). The purpose of this study was to evaluate the association between the PTS and MMT in adolescents, and to determine the optimal cut-off values of PTS for discriminating between the MMT and the control groups. METHODS: Between January 2018 and January 2020, a retrospective case-control study was performed. In this study, isolated MMT adolescent patients with no ligamentous injuries were matched by age and sex to a control group of radiologically normal images. The PTS was defined as the angle between the perpendicular line to proximal tibial cortex (PTC) and the tangent line along the tibial plateau. Then, both the medial posterior tibial slope (MPTS) and lateral posterior tibial slope (LPTS) were measured by plain radiographs on the lateral views. In addition, the optimal cut-off values of PTS were determined by the receiver operating characteristic (ROC) curve analysis. RESULTS: A total of seventy-two patients who met the inclusion criteria were enrolled in the final analysis (36 patients with isolated MMT, 36 controls). The MPTS was greater in the knees with isolated MMT (10.7° ± 2.1°) than that of the control group (8.8° ± 1.7°), showing significant difference (P<0.001). However, there was no significant difference regarding the LPTS between the isolated MMT and controls (11.5 ± 3.4 vs 10.9 ± 2.6, p>0.05). In the ROC curve analysis, the calculated cutoff value of the MPTS discriminating between the groups was 10.3°, with a sensitivity of 73.3% and specificity of 78.9%. CONCLUSIONS: This study demonstrated that steep MPTS is associated with MMT, and MPTS≥10.3° was identified to be a risk factor for MMT in adolescents.
Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Adolescente , Adulto , Estudos de Casos e Controles , Humanos , Imageamento por Ressonância Magnética , Meniscos Tibiais/diagnóstico por imagem , Estudos Retrospectivos , Tíbia/diagnóstico por imagemRESUMO
PURPOSE: The purpose of this study was to evaluate the long-term clinical and radiographic outcomes of partial patellectomy (PP) in patients with patella comminuted distal pole fractures. METHODS: Seventeen patients who were diagnosed with patella comminuted distal pole fractures and underwent PP procedures were retrospectively included between January 1995 and January 2005. We collected patient demographics and data on the mechanism of injury, time to surgery, fracture type, follow-up time, and post-operative complications (infection, patellofemoral arthritis, and stiffness). At the final follow-up, functional outcome was evaluated by the range of motion (ROM) and the Bostman Scoring System. Quadriceps strength was evaluated by using an isokinetic dynamometer to measure peak torque, and patellar height was evaluated by the Insall-Salvati (IS) ratio in lateral knee radiographs. The average follow-up period was 14.6 years (range, 11-19 years). RESULTS: We analyzed 17 patients (AO/OTA 34-A1), with an average age of 59.8 years (range, 43-76 years). According to the Bostman grading scales, final functional outcomes were excellent in 11 (64.7%) and good in six (35.3%) patients. All patients had full knee extension, and the average ROM was 125.1° (range, 121.4-129.3°). The average peak torque of the injured knee was 103.2 ± 9.7 Nm, and that of the uninjured opposite side was 108.3 ± 7.6 Nm, with no significant difference (p > 0.05). Furthermore, no postoperative complications, such as infection, posttraumatic osteoarthritis, or stiffness, were observed. Compared to the uninjured knee, the IS ratio of the injured knee was 0.76 ± 0.13, indicating that the patellar height was decreased, which meant patella baja. CONCLUSIONS: The PP procedure for patella comminuted distal pole fractures is a safe, simple, and reliable technique that can provide good long-term clinical outcomes even with decreased patellar height and could be a satisfactory alternative treatment option when anatomical reduction is difficult.
Assuntos
Fraturas Ósseas , Fraturas Cominutivas , Fixação Interna de Fraturas , Fraturas Cominutivas/diagnóstico por imagem , Fraturas Cominutivas/cirurgia , Humanos , Pessoa de Meia-Idade , Patela/diagnóstico por imagem , Patela/cirurgia , Amplitude de Movimento Articular , Estudos Retrospectivos , Resultado do TratamentoRESUMO
BACKGROUND: Despite advances of surgery and neoadjuvant chemotherapy during the past few decades, the therapeutic efficacy of current therapeutic protocol for osteosarcoma (OS) is still seriously compromised by multi-drug resistance and severe side effects. Amplification of intracellular oxidative stress is considered as an effective strategy to induce cancer cell death. The purpose of this study was to develop a novel strategy that can amplify the intracellular oxidative stress for synergistic cascade cancer therapy. METHODS AND RESULTS: A novel nanocomposite, composed of folic acid (FA) modified mesoporous silica-coated gold nanostar (GNS@MSNs-FA) and traditional Chinese medicine lycorine (Ly), was rationally designed and developed. Under near-infrared (NIR) irradiation, the obtained GNS@MSNs-FA/Ly could promote a high level of ROS production via inducing mitochondrial dysfunction and potent endoplasmic reticulum (ER) stress. Moreover, glutathione (GSH) depletion during ER stress could reduce ROS scavenging and further enable efficient amplification of intracellular oxidative stress. Both in vitro and in vivo studies demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation exhibited excellent antitumor efficacy without noticeable toxicity in MNNG/HOS tumor-bearing mice. CONCLUSION: All these results demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation could dramatically amplify the intra-tumoral oxidative stress, exhibiting excellent antitumor ability without obvious systemic toxicity. Taken together, this promising strategy provides a new avenue for the effective cancer synergetic therapy and future clinical translation.
Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Ouro/química , Nanocompostos/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fenantridinas/farmacologia , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático , Ácido Fólico , Humanos , Camundongos , Microscopia de Fluorescência , Mitocôndrias , Nanocompostos/uso terapêutico , Neoplasias/patologia , Osteossarcoma , Espécies Reativas de Oxigênio , Dióxido de SilícioRESUMO
BACKGROUND: Lateral tibial plateau fractures (TPFs) are often treated with conventional open reduction and internal fixation (ORIF) through standard anterolateral sub-meniscal arthrotomy. There has been increasing support for "bidirectional rapid redactor" device-assisted closed reduction and internal fixation (CRIF) for treating TPFs. The aim of the present study is to compare the clinical and radiological outcomes between CRIF and ORIF procedures. METHODS: We performed a retrospective cohort study of 55 lateral TPF patients (Schatzker types I-III) who accepted surgical treatment at our trauma level 1 center between January 2016 and January 2018. They were divided into the CRIF group (32 patients) and the ORIF group (23 patients) based upon the different surgical protocols. The patients' clinical outcome analysis was evaluated by using the Knee Society Score (KSS) and Rasmussen's clinical score. For radiological assessment, changes in tibial plateau width (TPW), articular depression depth (ADD), medial proximal tibial angle (MPTA), and posterior tibial slope angle (PTSA) were evaluated using radiographs and computed tomography (CT) scan. RESULTS: The CRIF group had a mean follow-up of 28.9 months, and the ORIF group had a mean follow-up of 30.7 months (p>0.05). Furthermore, there was no statistically significant difference in terms of age, gender, injury mechanism, follow-up time, time interval from injury to surgery, and Schatzker classification in the two groups. With respect to the clinical outcomes including the KSS score and Rasmussen's clinical score, there was also no significant difference (p>0.05). Nevertheless, the CRIF group had lower intra-operative blood loss, shorter hospitalization days, and better range of movement of the knee joint than the ORIF group (p<0.05). Furthermore, CRIF had better radiological results when compared to the ORIF group using Rasmussen's radiological score (p<0.05), although no significant difference was observed in TPW, ADD, MPTA, and PTSA between the two groups (p>0.05). CONCLUSION: The present study showed that CRIF could achieve comparable clinical outcomes and better radiological results for treating lateral TPFs as compared with conventional ORIF.
Assuntos
Artroscopia/métodos , Redução Fechada/métodos , Fixação Interna de Fraturas/métodos , Redução Aberta/métodos , Tíbia/cirurgia , Fraturas da Tíbia/cirurgia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tíbia/diagnóstico por imagem , Tíbia/patologia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/patologia , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
PURPOSE: Growing evidence indicates that preoperative biomarkers could be identified as independent prognostic factors in various cancers. The purpose of this study was to assess prognostic value of the preoperative lymphocyte-to-C-reactive protein ratio (LCR), albumin-to-globulin ratio (AGR), lymphocyte-monocyte ratio (LMR), and C-reactive protein to albumin ratio (CAR) in patients with osteosarcoma. METHODS: A total of 137 osteosarcoma patients treated at our hospital between 2011 and 2019 were enrolled in the study. Patient demographics, clinical characteristics, and laboratory data were collected and analyzed. The optimal cutoff values of LCR, AGR, LMR, and CAR were assessed with receiver operating characteristic (ROC) analysis. Kaplan-Meier analysis was performed to estimate overall survival (OS). Univariate and multivariate Cox regression models were employed to determine the independent prognostic factors. The hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated to evaluate relative risk. RESULTS: The optimal cutoff values of LCR, AGR, LMR, and CAR were 0.14, 1.79, 3.05 and 0.24, respectively. According to the univariate analysis, OS was remarkably associated with neoadjuvant chemotherapy (P < 0.001), pathological fracture (P < 0.001), local recurrence (P = 0.020), metastasis (P < 0.001), LCR (P = 0.035), AGR (P = 0.028), LMR (P = 0.010), and CAR (P = 0.004). In multivariate analyses, pathological fracture (P = 0.025), metastasis (P < 0.001), LCR (P = 0.012), and AGR (P = 0.001) were identified as independent risk predictors for OS. CONCLUSION: The present study provides new evidence that the preoperative LCR and AGR could serve as independent prognostic factors for patients with osteosarcoma. These findings will help physicians to stratify patients for appropriate treatment protocols and facilitate decision-making so as to improve the patients' survival condition.