RESUMO
The uncertainty relation, as one of the fundamental principles of quantum physics, captures the incompatibility of noncommuting observables in the preparation of quantum states. In this work, we derive two strong and universal uncertainty relations for N(N ≥ 2) observables with discrete and bounded spectra, one in multiplicative form and the other in additive form. To verify their validity, for illustration, we implement in the spin-1/2 system an experiment with single-photon measurement. The experimental results exhibit the validity and robustness of these uncertainty relations, and indicate the existence of stringent lower bounds.
RESUMO
This corrects the article DOI: 10.1038/srep44764.
RESUMO
Uncertainty relation lies at the heart of quantum mechanics, characterizing the incompatibility of non-commuting observables in the preparation of quantum states. An important question is how to improve the lower bound of uncertainty relation. Here we present a variance-based sum uncertainty relation for N incompatible observables stronger than the simple generalization of an existing uncertainty relation for two observables. Further comparisons of our uncertainty relation with other related ones for spin- and spin-1 particles indicate that the obtained uncertainty relation gives a better lower bound.