RESUMO
Low pesticide efficiency has caused serious environmental pollution and economic loss, which are closely related to each link in the targeted delivery of pesticides. However, the existing strategies for improving pesticide utilization rate are not comprehensive, and the regulation of foliar absorption and biological activity has been neglected. As surfactants are the most important agricultural synergists, the impact, wetting, adhesion, and leaf retention behaviors of pyraclostrobin (PYR) droplets containing the surfactant Triton X (TX) series on hydrophobic scallion leaf surfaces were studied. The results showed that TX-102 can sufficiently reduce the splash and roll of droplets when they impact inclined leaves, owing to its low dynamic surface tension. Moderate wetting ability and high adhesion also maximizes leaf retention of the TX-102-added PYR solution sprayed on scallion leaves. Furthermore, TX-102 improved the permeation and absorption of PYR in scallion leaves through the synergistic effects of opening the stomata and dissolving the waxy layer. The synergistic bioactivity of TX-102 against pathogenic fungi Alternaria porri and its safety to non-target organism zebrafish have also been demonstrated. Our study provides a more comprehensive theoretical rationale for screening adjuvants to improve the effectiveness and bioavailability of pesticides and reduce the risk of pesticides entering the environment.