Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014028

RESUMO

Targeting immune checkpoint receptors on T cells is a common cancer treatment strategy. Frequently, this is accomplished through antibodies targeting the ligand of inhibitory co-receptors. Blocking the immune checkpoint PD-1 binding to its ligands PD-L1 and PD-L2 prevents downstream signaling and enhances anti-tumor T cell responses. This approach improved cancer patients' outcome. However, only one-third of the patients respond to these treatments. To better understand the mechanism of anti-PD-1 antibodies, we explored the location of PD-1 within the immune synapse. Surprisingly, we discovered that anti-PD-1 antibodies, besides blocking the interaction between PD-1 and its ligands, also removed PD-1 from the synapse. We demonstrated a correlation between removing PD-1 from the synapse by anti-PD-1 antibodies and the extent of T cell activation. Interestingly, a short version of the anti-PD-1 antibody, F(ab') 2 , failed to remove PD-1 from the synapse and activate T cells. Using syngeneic tumor model, we showed a superior anti-tumor effect to anti-PD-1 antibody over the shorter version of the antibody. Our data indicates that anti-PD-1 antibodies activate T cells by removing PD-1 away from the synapse and changing the location of PD-1 or other immune receptors within immune synapse could serve as an alternative, efficient approach to treat cancer.

2.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36622343

RESUMO

Signaling lymphocyte activation molecule family member 6 (SLAMF6) is a T cell co-receptor. Previously, we showed that SLAMF6 clustering was required for T cell activation. To better understand the relationship between SLAMF6 location and function and to evaluate the role of SLAMF6 as a therapeutic target, we investigated how its compartmentalization on the cell surface affects T cell functions. We used biochemical and co-culture assays to show that T cell activity is enhanced when SLAMF6 colocalizes with the CD3 complex. Mechanistically, co-immunoprecipitation analysis revealed the SLAMF6-interacting proteins to be those essential for signaling downstream of T cell receptor, suggesting the two receptors share downstream signaling pathways. Bispecific anti-CD3/SLAMF6 antibodies, designed to promote SLAMF6 clustering with CD3, enhanced T cell activation. Meanwhile, anti-CD45/SLAMF6 antibodies inhibited SLAMF6 clustering with T cell receptor, likely because of the steric hindrance, but nevertheless enhanced T cell activation. We conclude that SLAMF6 bispecific antibodies have a role in modulating T cell responses, and future work will evaluate the therapeutic potential in tumor models.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
3.
J Acquir Immune Defic Syndr ; 73(4): 365-373, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27792681

RESUMO

BACKGROUND: Preexposure prophylaxis using antiretroviral agents has been shown to effectively prevent human immunodeficiency virus type 1 (HIV-1) acquisition in high-risk populations. However, the efficacy of these regimens is highly variable, which is thought to be largely due to the varying degrees of adherence to a daily intervention in the populations. Passive immunization using broadly neutralizing antibodies (bNAbs) against HIV-1, with their relatively long half-life and favorable safety profile, could provide an alternative to daily preexposure prophylaxis. However, most bNAbs have a limited breadth, only neutralizing 70%-90% of all HIV-1 strains. METHODS: To overcome the problem of limited antiviral breadth, we proposed that targeting human CD4 and HIV-1 envelope proteins simultaneously may improve virus-neutralization breadth and potency. Therefore, we constructed bispecific antibodies (biAbs) using single-chain variable fragments of anti-gp120 bNAbs fused to ibalizumab (iMab), a humanized monoclonal antibody that binds human CD4, the primary receptor for HIV-1. RESULTS: Some of our biAbs neutralized 100% of HIV-1 strains tested in vitro at clinically achievable concentrations. Distinct neutralization patterns were observed in this panel of biAbs. Those biAbs with specificity for the CD4-binding site on gp120 demonstrated 100% breadth, as well as slightly improved potency compared with iMab. In contrast, biAbs with specificity for the V1-V2 apex epitope or the V3-glycan epitope on gp120 demonstrated dramatically improved potency; some showed limited gain in neutralization breadth, whereas others (eg, PGT128-LM52 and 123-iMab) improved to 100% breadth. CONCLUSION: Our data suggest that this panel of iMab-based biAbs could be used to probe the parameters for potent HIV-1 neutralization. Moreover, a few of these biAbs warrant further studies and possibly clinical development.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Citocinas/metabolismo , Células HeLa , Humanos , Testes de Neutralização
4.
mBio ; 6(2)2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900654

RESUMO

UNLABELLED: Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Ig(mim2), CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4(+) T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection. IMPORTANCE: SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease. HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with current drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth and potency, including in primary chimpanzee CD4(+) T cells. These reagents provide an important first step toward translating intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes.


Assuntos
Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Anticorpos Anti-HIV/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Gorilla gorilla , Humanos , Concentração Inibidora 50 , Testes de Neutralização , Pan troglodytes , Vírus da Imunodeficiência Símia/isolamento & purificação
5.
Nat Biotechnol ; 31(11): 1047-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24097413

RESUMO

Ibalizumab is a humanized monoclonal antibody that binds human CD4--a key receptor for HIV--and blocks HIV-1 infection. However, HIV-1 strains with mutations resulting in loss of an N-linked glycan from the V5 loop of the envelope glycoprotein gp120 are resistant to ibalizumab. Previous structural analysis suggests that this glycan fills a void between the gp120 V5 loop and the ibalizumab light chain, perhaps causing steric hindrance that disrupts viral entry. If this void contributes to HIV-1 resistance to ibalizumab, we reasoned that 'refilling' it by engineering an N-linked glycan into the ibalizumab light chain at a position spatially proximal to gp120 V5 may restore susceptibility to ibalizumab. Indeed, one such ibalizumab variant neutralized 100% of 118 diverse HIV-1 strains tested in vitro, including 10 strains resistant to parental ibalizumab. These findings demonstrate that the strategic placement of a glycan in the variable region of a monoclonal antibody can substantially enhance its activity.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Antígenos CD4/metabolismo , Reações Cruzadas , Farmacorresistência Viral/efeitos dos fármacos , Células HEK293 , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , HIV-1/isolamento & purificação , Humanos , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 110(33): 13540-5, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23878231

RESUMO

In the absence of an effective HIV-1 vaccine, passive immunization using broadly neutralizing Abs or Ab-like molecules could provide an alternative to the daily administration of oral antiretroviral agents that has recently shown promise as preexposure prophylaxis. Currently, no single broadly neutralizing Ab (bNAb) or combination of bNAbs neutralizes all HIV-1 strains at practically achievable concentrations in vivo. To address this problem, we created bispecific Abs that combine the HIV-1 inhibitory activity of ibalizumab (iMab), a humanized mAb directed to domain 2 of human CD4, with that of anti-gp120 bNAbs. These bispecific bNAbs (BibNAbs) exploit iMab's potent anti-HIV-1 activity and demonstrated clinical efficacy and safety to anchor and thereby concentrate a second broadly neutralizing agent at the site of viral entry. Two BibNabs, PG9-iMab and PG16-iMab, exhibit exceptional breadth and potency, neutralizing 100% of the 118 viruses tested at low picomolar concentrations, including viruses resistant to both parental mAbs. The enhanced potency of these BibNAbs was entirely dependent on CD4 anchoring, not on membrane anchoring per se, and required optimal Ab geometry and linker length. We propose that iMab-based BibNAbs, such as PG9-iMab and PG16-iMab, are promising candidates for passive immunization to prevent HIV-1 infection.


Assuntos
Síndrome da Imunodeficiência Adquirida/prevenção & controle , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunização Passiva/métodos , Anticorpos Biespecíficos/farmacologia , Anticorpos Neutralizantes/farmacologia , Antígenos CD4/imunologia , Cromatografia em Gel , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Testes de Neutralização , Ressonância de Plasmônio de Superfície
7.
PLoS One ; 5(7): e11689, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20657739

RESUMO

BACKGROUND: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an "early," recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a "late" form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to "late" SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. CONCLUSIONS/SIGNIFICANCE: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates.


Assuntos
Vacinas contra a AIDS/imunologia , Genes env/genética , HIV-1/imunologia , HIV-1/patogenicidade , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Evolução Molecular , HIV-1/genética , Macaca mulatta , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase
8.
J Virol ; 84(14): 6935-42, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20463063

RESUMO

Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.


Assuntos
Fármacos Anti-HIV , Anticorpos Monoclonais/imunologia , Antígenos CD4/imunologia , Mapeamento de Epitopos , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Fármacos Anti-HIV/imunologia , Fármacos Anti-HIV/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD4/química , Antígenos CD4/genética , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Alinhamento de Sequência , Internalização do Vírus
9.
Retrovirology ; 6: 65, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19602283

RESUMO

BACKGROUND: Although pig-tailed macaques (Macaca nemestrina) have been used in AIDS research for years, less is known about the early immunopathogenic events in this species, as compared to rhesus macaques (Macaca mulatta). Similarly, the events in early infection are well-characterized for simian immunodeficiency viruses (SIV), but less so for chimeric simian-human immunodeficiency viruses (SHIV), although the latter have been widely used in HIV vaccine studies. Here, we report the consequences of intrarectal infection with a CCR5-tropic clade C SHIV-1157ipd3N4 in pig-tailed macaques. RESULTS: Plasma and cell-associated virus was detectable in peripheral blood and intestinal tissues of all four pig-tailed macaques following intrarectal inoculation with SHIV-1157ipd3N4. We also observed a rapid and irreversible loss of CD4+ T cells at multiple mucosal sites, resulting in a marked decrease of CD4:CD8 T cell ratios 0.5-4 weeks after inoculation. This depletion targeted subsets of CD4+ T cells expressing the CCR5 coreceptor and having a CD28-CD95+ effector memory phenotype, consistent with the R5-tropism of SHIV-1157ipd3N4. All three animals that were studied beyond the acute phase seroconverted as early as week 4, with two developing cross-clade neutralizing antibody responses by week 24. These two animals also demonstrated persistent plasma viremia for >48 weeks. One of these animals developed AIDS, as shown by peripheral blood CD4+ T-cell depletion starting at 20 weeks post inoculation. CONCLUSION: These findings indicate that SHIV-1157ipd3N4-induced pathogenesis in pig-tailed macaques followed a similar course as SIV-infected rhesus macaques. Thus, R5 SHIV-C-infection of pig-tailed macaques could provide a useful and relevant model for AIDS vaccine and pathogenesis research.


Assuntos
HIV/crescimento & desenvolvimento , HIV/imunologia , Macaca nemestrina/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/sangue , Sangue/virologia , Antígenos CD28/análise , Relação CD4-CD8 , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/imunologia , HIV/genética , Mucosa Intestinal/virologia , Subpopulações de Linfócitos/imunologia , Testes de Neutralização , Receptores CCR5/análise , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Receptor fas
10.
DNA Cell Biol ; 28(3): 103-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19182996

RESUMO

We developed a rapid method to generate recombinant vaccinia viruses (rVVs) based upon a bicistronic cassette encoding the gene for green fluorescent protein (GFP) and a foreign gene of interest separated by an internal ribosome entry site (IRES). As proof-of-concept, we inserted a mutant env gene of human immunodeficiency virus (HIV) into the cassette, which was cloned into the vaccinia virus (VV) insertion vector pSC59 under the control of the early-late VV synthetic promoter and flanked by disrupted tk gene sequences. To generate rVVs, 293T cells were inoculated with wild-type (wt) VV, followed by transfection of the modified pSC59 vector containing the bicistronic cassette, which allows expression of GFP and the protein of interest. Next, GFP-positive cells were isolated by flow cytometry or by picking under a fluorescent microscope. Thymidine kinase-deficient (Tk(-)) 143B cells were then exposed to lysates of GFP-positive 293T cells and cultured in the presence of bromodeoxyuridine. This selection allows only Tk(-) rVV to remain viable. We demonstrated the success of this GFP selection strategy by expressing high levels of mutant HIV Env. Our approach shortens the time needed to generate rVVs and represents a practical approach to generate recombinant proteins.


Assuntos
Genes env , Proteínas de Fluorescência Verde/genética , HIV/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Vaccinia virus/genética , Linhagem Celular , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , HIV/metabolismo , Humanos , Proteínas Recombinantes/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Virol ; 83(3): 1422-32, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19019970

RESUMO

Human immunodeficiency virus clade C (HIV-C) accounts for >56% of all HIV infections worldwide. To investigate vaccine safety and efficacy in nonhuman primates, a pathogenic, R5-tropic, neutralization-sensitive simian-human immunodeficiency virus (SHIV) carrying HIV-C env would be desirable. We have constructed SHIV-2873Ni, an R5-tropic SHIV carrying a primary pediatric HIV-C env gene isolated from a 2-month-old Zambian infant, who died within 1 year of birth. SHIV-2873Ni was constructed using SHIV-1157ipd3N4 (R. J. Song, A. L. Chenine, R. A. Rasmussen, C. R. Ruprecht, S. Mirshahidi, R. D. Grisson, W. Xu, J. B. Whitney, L. M. Goins, H. Ong, P. L. Li, E. Shai-Kobiler, T. Wang, C. M. McCann, H. Zhang, C. Wood, C. Kankasa, W. E. Secor, H. M. McClure, E. Strobert, J. G. Else, and R. M. Ruprecht. J. Virol. 80:8729-8738, 2006) as the backbone, since the latter contains additional NF-kappaB sites in the long terminal repeats to enhance viral replicative capacity. The parental virus, SHIV-2873Ni, was serially passaged through five rhesus monkeys (RMs); SHIV-2873Nip, the resulting passaged virus, was reisolated from the fourth recipient about 1 year postinoculation. SHIV-2873Nip was replication competent in RM peripheral blood mononuclear cells of all random donors tested and was exclusively R5 tropic, and its env gene clustered with HIV-C by phylogenetic analysis; its moderate [corrected] sensitivity to neutralization led to classification as a tier 2 [corrected] virus. Indian-origin RMs were inoculated by different mucosal routes, resulting in high peak viral RNA loads. Signs of virus-induced disease include depletion of gut CD4(+) T lymphocytes, loss of memory T cells in blood, and thrombocytopenia that resulted in fatal cerebral hemorrhage. SHIV-2873Nip is a highly replication-competent, mucosally transmissible, pathogenic R5-tropic virus that will be useful to study viral pathogenesis and to assess the efficacy of immunogens targeting HIV-C Env.


Assuntos
Infecções por HIV/virologia , HIV/imunologia , Testes de Neutralização , Vírus da Imunodeficiência Símia/imunologia , Animais , Sequência de Bases , Primers do DNA , Progressão da Doença , Genes env , HIV/genética , HIV/isolamento & purificação , HIV/fisiologia , Humanos , Lactente , Macaca mulatta , Filogenia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral
12.
Retrovirology ; 5: 94, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18928523

RESUMO

BACKGROUND: Infection of nonhuman primates with simian immunodeficiency virus (SIV) or chimeric simian-human immunodeficiency virus (SHIV) strains is widely used to study lentiviral pathogenesis, antiviral immunity and the efficacy of AIDS vaccine candidates. SHIV challenges allow assessment of anti-HIV-1 envelope responses in primates. As such, SHIVs should mimic natural HIV-1 infection in humans and, to address the pandemic, encode HIV-1 Env components representing major viral subtypes worldwide. RESULTS: We have developed a panel of clade C R5-tropic SHIVs based upon env of a Zambian pediatric isolate of HIV-1 clade C, the world's most prevalent HIV-1 subtype. The parental infectious proviral clone, SHIV-1157i, was rapidly passaged through five rhesus monkeys. After AIDS developed in the first animal at week 123 post-inoculation, infected blood was infused into a sixth monkey. Virus reisolated at this late stage was still exclusively R5 tropic and mucosally transmissible. Here we describe the long-term follow-up of this initial cohort of six monkeys. Two have remained non-progressors, whereas the other four gradually progressed to AIDS within 123-270 weeks post-exposure. Two progressors succumbed to opportunistic infections, including a case of SV40 encephalitis. CONCLUSION: These data document the disease progression induced by the first mucosally transmissible, pathogenic R5 non-clade B SHIV and suggest that SHIV-1157i-derived viruses, including the late-stage, highly replication-competent SHIV-1157ipd3N4 previously described (Song et al., 2006), display biological characteristics that mirror those of HIV-1 clade C and support their expanded use for AIDS vaccine studies in nonhuman primates.


Assuntos
Síndrome da Imunodeficiência Adquirida/transmissão , HIV-1/patogenicidade , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas do Envelope Viral/genética , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/patologia , Síndrome da Imunodeficiência Adquirida/virologia , Sequência de Aminoácidos , Animais , Linhagem Celular , HIV-1/genética , HIV-1/fisiologia , Humanos , Macaca mulatta , Dados de Sequência Molecular , Alinhamento de Sequência , Inoculações Seriadas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Proteínas do Envelope Viral/metabolismo , Carga Viral , Replicação Viral
13.
PLoS Negl Trop Dis ; 2(7): e265, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18648516

RESUMO

BACKGROUND: Individuals living in sub-Saharan Africa represent 10% of the world's population but almost 2/3 of all HIV-1/AIDS cases. The disproportionate HIV-1 infection rates in this region may be linked to helminthic parasite infections that affect many individuals in the developing world. However, the hypothesis that parasite infection increases an individual's susceptibility to HIV-1 has never been prospectively tested in a relevant in vivo model. METHODOLOGY/PRINCIPAL FINDINGS: We measured whether pre-existing infection of rhesus monkeys with a parasitic worm would facilitate systemic infection after mucosal AIDS virus exposure. Two groups of animals, one consisting of normal monkeys and the other harboring Schistosoma mansoni, were challenged intrarectally with decreasing doses of R5-tropic clade C simian-human immunodeficiency virus (SHIV-C). Systemic infection occurred in parasitized monkeys at viral doses that remained sub-infectious in normal hosts. In fact, the 50% animal infectious (AID(50)) SHIV-C dose was 17-fold lower in parasitized animals compared to controls (P<0.001). Coinfected animals also had significantly higher peak viral RNA loads than controls (P<0.001), as well as increased viral replication in CD4(+) central memory cells (P = 0.03). CONCLUSIONS/SIGNIFICANCE: Our data provide the first direct evidence that acute schistosomiasis significantly increases the risk of de novo AIDS virus acquisition, and the magnitude of the effect suggests that control of helminth infections may be a useful public health intervention to help decrease the spread of HIV-1.


Assuntos
Suscetibilidade a Doenças , Infecções por HIV/imunologia , Macaca mulatta , Esquistossomose mansoni/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Feminino , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Macaca mulatta/parasitologia , Macaca mulatta/virologia , Mucosa/imunologia , Mucosa/virologia , Fatores de Risco , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/parasitologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Carga Viral , Replicação Viral
14.
AIDS ; 21(14): 1841-8, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17721091

RESUMO

OBJECTIVE: To determine whether multigenic protein immunogens including native, trimeric HIV clade C (HIV-C) gp160 could cross-protect macaques against mucosal challenge with clade C (SHIV-C) mismatched for env. DESIGN: Because AIDS vaccine recipients are unlikely to encounter exactly matched HIV strains and to represent the diversity of locally circulating HIV-C strains, we selected env genes to generate the gp160 immunogen and SHIV-C from different, recently infected infants of the same clinical cohort in Zambia. In a model of postnatal HIV-C transmission, infant macaques were immunized with soluble viral proteins, including trimeric HIV1084i Env, and challenged with SHIV-1157ip; protein-only vaccination was compared with a DNA prime/protein boost strategy. METHODS: All vaccinated and control monkeys were exposed orally to low-dose, R5-tropic SHIV-1157ip encoding heterologous env. Animals with no or only transient infection were rechallenged intrarectally with a high dose of R5 SHIV-1157ipd3N4, a 'late', animal-evolved SHIV-1157ip variant. Animals were followed prospectively for immune parameters and viral RNA loads. RESULTS: Vaccination induced cross-neutralizing antibodies. Compared to controls, vaccinees had significantly lower peak viral RNA loads, and one vaccine recipient remained completely virus-free, even in lymphoid tissues. There was a trend for the protein-only vaccine to yield better protection than the combined modality approach. CONCLUSION: Protein-only immunogens induced significant protection against heterologous viruses encoding env from locally circulating viruses.


Assuntos
Proteína gp160 do Envelope de HIV/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Administração Oral , Animais , Anticorpos Antivirais/imunologia , DNA Viral/imunologia , Modelos Animais de Doenças , Esquema de Medicação , Produtos do Gene gag/imunologia , Produtos do Gene tat/imunologia , Proteína gp160 do Envelope de HIV/genética , Macaca mulatta , RNA Viral/imunologia , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Vacinação/métodos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Carga Viral , Proteínas Virais/imunologia
15.
Mol Ther ; 15(5): 1007-15, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17356539

RESUMO

Transfection of DNA vaccines with chemokines may recruit dendritic cells (DCs) locally to capture the antigenic genes and their gene products to generate enhanced CD8(+) cytotoxic T lymphocytes (CTLs). In this study, we investigated the effects of macrophage inflammatory protein (MIP)-1 alpha, MIP-3 alpha, and MIP-3beta on human immunodeficiency virus (HIV) Gag DNA vaccination. The chemokine plasmids markedly enhanced the local infiltration of inflammatory cells and increased the presence of CD11c(+) B7.2(+)-activated DCs. MIP-1 alpha and MIP-3 alpha were potent adjuvants in augmenting CTLs and afforded strong protection to immunized animals against challenge with vaccinia virus expressing Gag (vv-Gag). However, decreased humoral response was observed. MIP-3beta plasmid did not dramatically alter immunity. The chemokine inoculation time with respect to DNA vaccine priming was also investigated. The injection of pMIP-3 alpha three days before Gag plasmid (pGag) vaccination markedly increased specific CTLs compared with simultaneous injection and led to higher protection against vv-Gag. Immunity was also shifted toward a T-helper type-1 (Th1) response. In contrast, inoculation with pMIP-3 alpha three days after pGag vaccination shifted immunity toward a Th2 response. Our data suggest that administration of a chemokine with DNA vaccines offers a valuable strategy to modulate the efficacy and polarization of specific immunity and that chemokine-antigen timing is critical in determining overall biological effects.


Assuntos
Produtos do Gene gag/imunologia , HIV/imunologia , Proteínas Inflamatórias de Macrófagos/imunologia , Vacinas de DNA/imunologia , Animais , Linhagem Celular , Quimiocina CCL4 , Quimiotaxia/imunologia , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Produtos do Gene gag/genética , HIV/genética , Humanos , Proteínas Inflamatórias de Macrófagos/genética , Proteínas Inflamatórias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Plasmídeos/administração & dosagem , Plasmídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Linfócitos T Citotóxicos/imunologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
16.
Infect Immun ; 75(4): 1751-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17283092

RESUMO

We tested the hypothesis that helminth parasite coinfection would intensify viremia and accelerate disease progression in monkeys chronically infected with an R5 simian-human immunodeficiency virus (SHIV) encoding a human immunodeficiency virus type 1 (HIV-1) clade C envelope. Fifteen rhesus monkeys with stable SHIV-1157ip infection were enrolled into a prospective, randomized trial. These seropositive animals had undetectable viral RNA and no signs of immunodeficiency. Seven animals served as virus-only controls; eight animals were exposed to Schistosoma mansoni cercariae. From week 5 after parasite exposure onward, coinfected animals shed eggs in their feces, developed eosinophilia, and had significantly higher mRNA expression of the T-helper type 2 cytokine interleukin-4 (P = 0.001) than animals without schistosomiasis. Compared to virus-only controls, viral replication was significantly increased in coinfected monkeys (P = 0.012), and the percentage of their CD4(+) CD29(+) memory cells decreased over time (P = 0.05). Thus, S. mansoni coinfection significantly increased viral replication and induced T-cell subset alterations in monkeys with chronic SHIV clade C infection.


Assuntos
Esquistossomose mansoni/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vírus da Imunodeficiência Símia/fisiologia , Viremia , Animais , Antígenos CD4/análise , Modelos Animais de Doenças , Eosinofilia , Fezes/parasitologia , Integrina beta1/análise , Interleucina-4/biossíntese , Subpopulações de Linfócitos/imunologia , Macaca mulatta , RNA Viral/sangue , Schistosoma mansoni , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Carga Viral , Replicação Viral
17.
Mol Ther ; 15(5): 1007-1015, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-28182892

RESUMO

Transfection of DNA vaccines with chemokines may recruit dendritic cells (DCs) locally to capture the antigenic genes and their gene products to generate enhanced CD8+ cytotoxic T lymphocytes (CTLs). In this study, we investigated the effects of macrophage inflammatory protein (MIP)-1α, MIP-3α, and MIP-3ß on human immunodeficiency virus (HIV) Gag DNA vaccination. The chemokine plasmids markedly enhanced the local infiltration of inflammatory cells and increased the presence of CD11c+ B7.2+-activated DCs. MIP-1α and MIP-3α were potent adjuvants in augmenting CTLs and afforded strong protection to immunized animals against challenge with vaccinia virus expressing Gag (vv-Gag). However, decreased humoral response was observed. MIP-3ß plasmid did not dramatically alter immunity. The chemokine inoculation time with respect to DNA vaccine priming was also investigated. The injection of pMIP-3α three days before Gag plasmid (pGag) vaccination markedly increased specific CTLs compared with simultaneous injection and led to higher protection against vv-Gag. Immunity was also shifted toward a T-helper type-1 (Th1) response. In contrast, inoculation with pMIP-3α three days after pGag vaccination shifted immunity toward a Th2 response. Our data suggest that administration of a chemokine with DNA vaccines offers a valuable strategy to modulate the efficacy and polarization of specific immunity and that chemokine-antigen timing is critical in determining overall biological effects.

18.
J Interferon Cytokine Res ; 26(6): 380-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16734558

RESUMO

Controlled release of granulocyte-macrophage colony-stimulating factor (GM-CSF) protein by albumin-heparin microparticles administered via intramuscular vaccination in conjunction with HIV DNA vaccines stimulated HIV Gag-specific immune responses. In the murine model, Gag-specific cytotoxic T lymphocyte (CTL) and T helper (Th) responses were significantly enhanced by administration of murine GM-CSF microparticles. This effect was comparable to a GM-CSF encoded plasmid. In three of four rhesus monkeys, enhancement of Gag-specific antibody (Ab), Th, and CTL responses was observed 1 month after the first immunization with coadministration of human GM-CSF microparticles and HIV Gag plasmid. The second, third, and fourth booster immunizations, however, did not increase the Gag-specific immune responses. Subsequent application of Gag protein in complete Freund's adjuvant (CFA) significantly enhanced Ab and Th, but not CTL. However, Gag-specific CTL response was triggered by cytokine and Gag p55-encapsulated microparticles in all animals. The strategy of priming immune responses by coadministration of cytokine microparticles and DNA vaccines, followed by boosting with cytokine and antigen protein-encapsulated microparticles, may prove effective in improving an HIV DNA vaccine design.


Assuntos
Produtos do Gene gag/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , HIV , Vacinas de DNA/genética , Albuminas/farmacocinética , Albuminas/ultraestrutura , Animais , Testes Imunológicos de Citotoxicidade , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Heparina/farmacocinética , Heparina/ultraestrutura , Humanos , Injeções Intramusculares , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Modelos Animais , Músculo Esquelético/imunologia , Plasmídeos , Proteínas Recombinantes , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
19.
Vaccine ; 24(37-39): 6356-65, 2006 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-16793181

RESUMO

Several vaccine strategies aim to generate cell-mediated immunity (CMI) against microorganisms or tumors. While epitope-based vaccines offer advantages, knowledge of specific epitopes and frequency of major histocompatibility complex (MHC) alleles is required. Here we show that using promiscuous overlapping synthetic peptides (OSP) as immunogens generated peptide-specific CMI in all vaccinated outbred mice and in different strains of inbred mice; CMI responses also recognized viral proteins. OSP immunogens also induced CMI ex vivo in dendritic cell/T-cell cocultures involving cells from individuals with different HLA haplotypes. Thus, broad CMI was induced by OSP in different experimental settings, using different immunogens, without identifying either epitopes or MHC backgrounds of the vaccinees.


Assuntos
Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia , Sequência de Aminoácidos , Animais , Células Dendríticas/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Antígenos HLA/imunologia , Imunidade Celular/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA