Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(1): 1671-1680, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35029115

RESUMO

DNA molecular wires have been studied extensively because of the ease with which molecules of controlled length and composition can be synthesized. The same has not been true for proteins. Here, we have synthesized and studied a series of consensus tetratricopeptide repeat (CTPR) proteins, spanning 4 to 20 nm in length, in increments of 4 nm. For lengths in excess of 6 nm, their conductance exceeds that of the canonical molecular wire, oligo(phenylene-ethylenene), because of the more gradual decay of conductance with length in the protein. We show that, while the conductance decay fits an exponential (characteristic of quantum tunneling) and not a linear increase of resistance with length (characteristic of hopping transport), it is also accounted for by a square-law dependence on length (characteristic of weakly driven hopping). Measurements of the energy dependence of the decay length rule out the quantum tunneling case. A resonance in the carrier injection energy shows that allowed states in the protein align with the Fermi energy of the electrodes. Both the energy of these states and the long-range of hopping suggest that the reorganization induced by hole formation is greatly reduced inside the protein. We outline a model for calculating the molecular-electronic properties of proteins.


Assuntos
DNA , Eletrônica , Transporte de Elétrons , DNA/química , Eletrodos
2.
Biosens Bioelectron ; 174: 112829, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33308962

RESUMO

Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotropic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 µm) membranes with a size deviation of less than 7 µm over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18-21 pA over 100 kHz bandwidth, with 50-150 mV bias) when compared to a silicon-supported (SiS) nanopore (~1.3 nF, and 46-51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectronic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.


Assuntos
Técnicas Biossensoriais , Nanoporos , Óxido de Alumínio , DNA , Nanotecnologia
3.
J Am Chem Soc ; 142(13): 6432-6438, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176496

RESUMO

Bioelectronics research has mainly focused on redox-active proteins because of their role in biological charge transport. In these proteins, electronic conductance is a maximum when electrons are injected at the known redox potential of the protein. It has been shown recently that many non-redox-active proteins are good electronic conductors, though the mechanism of conduction is not yet understood. Here, we report single-molecule measurements of the conductance of three non-redox-active proteins, maintained under potential control in solution, as a function of electron injection energy. All three proteins show a conductance resonance at a potential ∼0.7 V removed from the nearest oxidation potential of their constituent amino acids. If this shift reflects a reduction of reorganization energy in the interior of the protein, it would account for the long-range conductance observed when carriers are injected into the interior of a protein.


Assuntos
Proteínas/química , Biotina/química , Condutividade Elétrica , Eletrodos , Transporte de Elétrons , Eletrônica , Elétrons , Modelos Moleculares , Oxirredução , Estreptavidina/química
4.
ACS Nano ; 14(2): 1360-1368, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31594304

RESUMO

Proteins have been shown to be electrically conductive if tethered to an electrode by means of a specific binding agent, allowing single molecules to be wired into an electrical sensing circuit. Such circuits allow enzymes to be used as sensors, detectors, and sequencing devices. We have engineered contact points into a Φ29 polymerase by introducing biotinylatable peptide sequences. The modified enzyme was bound to electrodes functionalized with streptavidin. Φ29 connected by one biotinylated contact, and a second nonspecific contact showed rapid small fluctuations in current when activated. Signals were greatly enhanced with two specific contacts. Features in the distributions of DC conductance increased by a factor 2 or more over the open to closed conformational transition of the polymerase. Polymerase activity is manifested by a rapid (millisecond) large (25% of background) current fluctuations imposed on the DC conductance.


Assuntos
Técnicas Biossensoriais , DNA Polimerase Dirigida por DNA/química , Engenharia de Proteínas , DNA Polimerase Dirigida por DNA/metabolismo , Condutividade Elétrica , Eletricidade , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
5.
Proc Natl Acad Sci U S A ; 116(13): 5886-5891, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846548

RESUMO

Proteins are widely regarded as insulators, despite reports of electrical conductivity. Here we use measurements of single proteins between electrodes, in their natural aqueous environment to show that the factor controlling measured conductance is the nature of the electrical contact to the protein, and that specific ligands make highly selective electrical contacts. Using six proteins that lack known electrochemical activity, and measuring in a potential region where no ion current flows, we find characteristic peaks in the distributions of measured single-molecule conductances. These peaks depend on the contact chemistry, and hence, on the current path through the protein. In consequence, the measured conductance distribution is sensitive to changes in this path caused by ligand binding, as shown with streptavidin-biotin complexes. Measured conductances are on the order of nanosiemens over distances of many nanometers, orders of magnitude more than could be accounted for by electron tunneling. The current is dominated by contact resistance, so the conductance for a given path is independent of the distance between electrodes, as long as the contact points on the protein can span the gap between electrodes. While there is no currently known biological role for high electronic conductance, its dependence on specific contacts has important technological implications, because no current is observed at all without at least one strongly bonded contact, so direct electrical detection is a highly selective and label-free single-molecule detection method. We demonstrate single-molecule, highly specific, label- and background free-electronic detection of IgG antibodies to HIV and Ebola viruses.


Assuntos
Condutividade Elétrica , Proteínas/química , Anticorpos Antivirais/imunologia , Técnicas Biossensoriais , Ebolavirus/imunologia , Eletrodos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Nanotecnologia
6.
Nano Futures ; 1(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29552645

RESUMO

Proteins are insulating molecular solids, yet even those containing easily reduced or oxidized centers can have single-molecule electronic conductances that are too large to account for with conventional transport theories. Here, we report the observation of remarkably high electronic conductance states in an electrochemically-inactive protein, the ~200 kD αVß3 extracelluar domain of human integrin. Large current pulses (up to nA) were observed for long durations (many ms, corresponding to many pC of charge transfer) at large gap (>5nm) distances in an STM when the protein was bound specifically by a small peptide ligand attached to the electrodes. The effect is greatly reduced when a homologous, weakly-binding protein (α4ß1) is used as a control. In order to overcome the limitations of the STM, the time- and voltage-dependence of the conductance were further explored using a fixed-gap (5 nm) tunneling junction device that was small enough to trap a single protein molecule at any one time. Transitions to a high conductance (~ nS) state were observed, the protein being "on" for times from ms to tenths of a second. The high-conductance states only occur above ~ 100mV applied bias, and thus are not an equilibrium property of the protein. Nanoamp two-level signals indicate the specific capture of a single molecule in an electrode gap functionalized with the ligand. This offers a new approach to label-free electronic detection of single protein molecules. Electronic structure calculations yield a distribution of energy level spacings that is consistent with a recently proposed quantum-critical state for proteins, in which small fluctuations can drive transitions between localized and band-like electronic states.

7.
ACS Nano ; 9(10): 9652-64, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26364915

RESUMO

Foremost among the challenges facing single molecule sequencing of proteins by nanopores is the lack of a universal method for driving proteins or peptides into nanopores. In contrast to nucleic acids, the backbones of which are uniformly negatively charged nucleotides, proteins carry positive, negative and neutral side chains that are randomly distributed. Recombinant proteins carrying a negatively charged oligonucleotide or polypeptide at the C-termini can be translocated through a α-hemolysin (α-HL) nanopore, but the required genetic engineering limits the generality of these approaches. In this present study, we have developed a chemical approach for addition of a charged oligomer to peptides so that they can be translocated through nanopores. As an example, an oligonucleotide PolyT20 was tethered to peptides through first selectively functionalizing their N-termini with azide followed by a click reaction. The data show that the peptide-PolyT20 conjugates translocated through nanopores, whereas the unmodified peptides did not. Surprisingly, the conjugates with their peptides tethered at the 5'-end of PolyT20 passed the nanopores more rapidly than the PolyT20 alone. The PolyT20 also yielded a wider distribution of blockade currents. The same broad distribution was found for a conjugate with its peptide tethered at the 3'-end of PolyT20, suggesting that the larger blockades (and longer translocation times) are associated with events in which the 5'-end of the PolyT20 enters the pore first.


Assuntos
DNA/química , Nanoporos , Oligonucleotídeos/química , Peptídeos/química , Sequência de Aminoácidos , Química Click , Proteínas Hemolisinas/química , Modelos Moleculares , Nanoporos/ultraestrutura , Nanotecnologia/métodos
8.
ACS Nano ; 8(12): 11994-2003, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25380505

RESUMO

Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events.


Assuntos
DNA , Microscopia de Tunelamento/instrumentação , Nucleotídeos , DNA/química , Condutividade Elétrica , Eletrodos , Ligação de Hidrogênio , Técnicas Analíticas Microfluídicas , Nucleotídeos/química , Paládio/química , Silício/química
9.
Nat Nanotechnol ; 9(6): 466-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705512

RESUMO

The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic 'fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.


Assuntos
Algoritmos , Aminoácidos/análise , Inteligência Artificial , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Proteoma/análise , Processamento Alternativo/fisiologia , Humanos , Mapeamento de Peptídeos/instrumentação , Análise Espectral/instrumentação , Análise Espectral/métodos
10.
ACS Nano ; 7(11): 10319-26, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24161197

RESUMO

Nanopores were fabricated with an integrated microscale Pd electrode coated with either a hydrogen-bonding or hydrophobic monolayer. Bare pores, or those coated with octanethiol, translocated single-stranded DNA with times of a few microseconds per base. Pores functionalized with 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide slowed average translocation times, calculated as the duration of the event divided by the number of bases translocated, to about 100 µs per base at biases in the range of 50 to 80 mV.


Assuntos
DNA/química , Eletrodos , Nanoporos , Transporte Biológico , DNA de Cadeia Simples/química , Desenho de Equipamento , Ligação de Hidrogênio , Teste de Materiais , Membranas Artificiais , Microscopia de Força Atômica , Nanotecnologia/métodos , Distribuição Normal , Paládio/química , Compostos de Sulfidrila/química , Propriedades de Superfície , Fatores de Tempo
11.
ACS Nano ; 7(1): 689-94, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23248975

RESUMO

Ion current through a single-walled carbon nanotube (SWCNT) was monitored at the same time as fluorescence was recorded from charged dye molecules translocating through the SWCNT. Fluorescence bursts generally follow ion current peaks with a delay time consistent with diffusion from the end of the SWCNT to the fluorescence collection point. The fluorescence amplitude distribution of the bursts is consistent with single-molecule signals. Thus each peak in the ion current flowing through the SWCNT is associated with the translocation of a single molecule. Ion current peaks (as opposed to blockades) were produced by both positively (Rhodamine 6G) and negatively (Alexa 546) charged molecules, showing that the charge filtering responsible for the current bursts is caused by the molecules themselves.


Assuntos
Condutometria/métodos , Técnicas de Sonda Molecular , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Rodaminas/análise , Rodaminas/química , Espectrometria de Fluorescência/métodos , Difusão , Teste de Materiais , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA