Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
bioRxiv ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39282331

RESUMO

Sex is a fundamental biological variable important in biomedical research, drug development, clinical trials, and prevention approaches. Among many organs, kidneys are known to exhibit remarkable structural, histological, and pathological differences between sexes. However, whether and how kidneys display distinct metabolic activities between sexes is poorly understood. By developing kidney-specific arteriovenous (AV) metabolomics combined with transcriptomics, we report striking sex differences in both basal metabolic activities and adaptive metabolic remodeling of kidneys after a fat-enriched ketogenic diet (KD), a regimen known to mitigate kidney diseases and improve immunotherapy for renal cancer. At the basal state, female kidneys show highly accumulated aldosterone and various acylcarnitines. In response to the KD, aldosterone levels remain high selectively in females but the sex difference in acylcarnitines disappears. AV data revealed that, under KD, female kidneys avidly take up circulating fatty acids and release 3-hydroxybutyrate (3-HB) whereas male kidneys barely absorb fatty acids but consistently take up 3-HB. Although both male and female kidneys take up gluconeogenic substrates such as glycerol, glutamine and lactate, only female kidneys exhibit net glucose release. Kidney transcriptomics data incompletely predict these sex differences, suggesting post-transcriptional/translational regulation mechanisms. This study provides foundational insights into the sex-dependent and diet-elicited metabolic flexibility of the kidneys in vivo, serving as a unique resource for understanding variable disease prevalence and drug responses between male and female kidneys.

2.
Front Microbiol ; 14: 1293149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029200

RESUMO

Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.

3.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995687

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , RNA Nuclear , Epigênese Genética , Heterocromatina , Expressão Gênica
4.
Biotechnol J ; 18(12): e2300180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596881

RESUMO

Butyrate-producing bacteria play a key role in human health, and recent studies have triggered interest in their development as next-generation probiotics. However, there remains limited knowledge not only on the identification of high-butyrate-producing bacteria in the human gut but also in the metabolic capacities for prebiotic carbohydrates and their interaction with the host. Herein, it was discovered that Roseburia intestinalis produces higher levels of butyrate and digests a wider variety of prebiotic polysaccharide structures compared with other human major butyrate-producing bacteria (Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia hominis). Moreover, R. intestinalis extracts upregulated the mRNA expression of tight junction proteins (TJP1, OCLN, and CLDN3) in human intestinal epithelial cells more than other butyrate-producing bacteria. R. intestinalis was cultured with human intestinal epithelial cells in the mimetic intestinal host-microbe interaction coculture system to explore the health-promoting effects using multiomics approaches. Consequently, it was discovered that live R. intestinalis only enhances purine metabolism and the oxidative pathway, increasing adenosine triphosphate levels in human intestinal epithelial cells, but that heat-killed bacteria had no effect. Therefore, this study proposes that R. intestinalis has potentially high value as a next-generation probiotic to promote host intestinal health.


Assuntos
Bactérias , Multiômica , Humanos , Bactérias/genética , Butiratos/metabolismo , Prebióticos , Células Epiteliais
5.
Front Bioeng Biotechnol ; 10: 971739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118584

RESUMO

Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host-Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.

6.
Annu Rev Nutr ; 42: 45-66, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995049

RESUMO

The consumption of fructose as sugar and high-fructose corn syrup has markedly increased during the past several decades. This trend coincides with the exponential rise of metabolic diseases, including obesity, nonalcoholic fatty liver disease, cardiovascular disease, and diabetes. While the biochemical pathways of fructose metabolism were elucidated in the early 1990s, organismal-level fructose metabolism and its whole-body pathophysiological impacts have been only recently investigated. In this review, we discuss the history of fructose consumption, biochemical and molecular pathways involved in fructose metabolism in different organs and gut microbiota, the role of fructose in the pathogenesis of metabolic diseases, and the remaining questions to treat such diseases.


Assuntos
Xarope de Milho Rico em Frutose , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Dieta , Frutose/efeitos adversos , Frutose/metabolismo , Xarope de Milho Rico em Frutose/efeitos adversos , Xarope de Milho Rico em Frutose/metabolismo , Humanos , Fígado/metabolismo , Doenças Metabólicas/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
7.
RSC Adv ; 12(27): 17434-17442, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765459

RESUMO

Melanin nanoparticles (MNPs) used for biomedical applications are often synthesized via the chemical auto-oxidation of catecholic monomers such as dopamine and 3,4-dihydroxyphenylalanine (DOPA) under alkaline conditions. However, the synthetic method for the chemical synthesis of MNP (cMNP) is relatively straightforward and more robust to control their homogenous particle size and morphology than the corresponding enzymatic synthetic methods. In this study, we demonstrated that the simple enzymatic synthesis of MNPs (eMNPs) with homogenous and soluble (<20 nm diameter) properties is possible using dopamine and Burkholderia cepacia tyrosinase (BcTy) under acidic conditions (i.e., pH 3.0). BcTy was highly reactive under pH 5.0, where the natural and chemical oxidation of catechol is complex, and thus melanin was synthesized via the hydroxylation of phenolic substrates. The detailed chemical analysis and characterization of the physical properties of the eMNPs confirmed the higher preservation of the catechol and primary amine moieties in the monomer substrate such as dopamine under acidic conditions. The eMNPs showed enhanced antioxidant activity and conferred stickiness to the formed hydrogel compared to the chemical auto-oxidation method owing to the large number of hydroxyl groups remaining such as catechol and quinone moieties. Because of these advantages and characteristics, the synthesis of MNPs using BcTy under acidic conditions can open a new path for their biomedical applications.

8.
Front Bioeng Biotechnol ; 10: 825399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252133

RESUMO

Faecalibacterium prausnitzii, a major commensal bacterium in the human gut, is well known for its anti-inflammatory effects, which improve host intestinal health. Although several studies have reported that inulin, a well-known prebiotic, increases the abundance of F. prausnitzii in the intestine, the mechanism underlying this effect remains unclear. In this study, we applied liquid chromatography tandem mass spectrometry (LC-MS/MS)-based multiomics approaches to identify biological and enzymatic mechanisms of F. prausnitzii involved in the selective digestion of inulin. First, to determine the preference for dietary carbohydrates, we compared the growth of F. prausnitzii in several carbon sources and observed selective growth in inulin. In addition, an LC-MS/MS-based intracellular proteomic and metabolic profiling was performed to determine the quantitative changes in specific proteins and metabolites of F. prausnitzii when grown on inulin. Interestingly, proteomic analysis revealed that the putative proteins involved in inulin-type fructan utilization by F. prausnitzii, particularly ß-fructosidase and amylosucrase were upregulated in the presence of inulin. To investigate the function of these proteins, we overexpressed bfrA and ams, genes encoding ß-fructosidase and amylosucrase, respectively, in Escherichia coli, and observed their ability to degrade fructan. In addition, the enzyme activity assay demonstrated that intracellular fructan hydrolases degrade the inulin-type fructans taken up by fructan ATP-binding cassette transporters. Furthermore, we showed that the fructose uptake activity of F. prausnitzii was enhanced by the fructose phosphotransferase system transporter when inulin was used as a carbon source. Intracellular metabolomic analysis indicated that F. prausnitzii could use fructose, the product of inulin-type fructan degradation, as an energy source for inulin utilization. Taken together, this study provided molecular insights regarding the metabolism of F. prauznitzii for inulin, which stimulates the growth and activity of the beneficial bacterium in the intestine.

9.
Biotechnol J ; 17(2): e2100397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894414

RESUMO

The cellular components of Akkermansia muciniphila are considered potential biotherapeutics for the improvement of obesity, diabetes, and metabolic diseases. However, the molecular-based mechanism of A. muciniphila for treatment of obesity, which can provide important evidence for human research, has rarely been explored. Here, we applied integrative multiomics approaches to investigate the underlying molecular mechanism involved in obesity treatment by A. muciniphila. First, the treatment with a cell lysate of A. muciniphila reduced lipid accumulation in 3T3-L1 cells and downregulated the mRNA expression of proteins involved in adipogenesis and lipogenesis. Our proteomic results revealed that A. muciniphila decreased the expression of proteins involved in fat cell differentiation, fatty acid metabolism, and energy metabolism in adipocytes. Moreover, A. muciniphila significantly reduced the level of metabolites related to glycolysis, the TCA cycle, and ATP in adipocytes. Interestingly, serine protease inhibitor A3 (SERPINA3) homologs were overexpressed in the 3T3-L1 cells treated with A. muciniphila. Small interfering RNA (siRNA) transfection demonstrated that A. muciniphila upregulates SERPINA3G expression and inhibits lipogenesis in adipocytes. Taken together, our multiomics-based approaches enabled to uncover the molecular mechanism of A. muciniphila for treatment of obesity and provide potent anti-lipogenic agents.


Assuntos
Adipogenia , Lipogênese , Adipócitos , Adipogenia/genética , Akkermansia , Humanos , Proteômica
10.
Biotechnol Bioeng ; 118(4): 1612-1623, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421096

RESUMO

The commensal gut bacterium Akkermansia muciniphila is well known as a promising probiotic candidate that improves host health and prevents diseases. However, the biological interaction of A. muciniphila with human gut epithelial cells has rarely been explored for use in biotherapeutics. Here, we developed an in vitro device that simulates the gut epithelium to elucidate the biological effects of living A. muciniphila via multiomics analysis: the Mimetic Intestinal Host-Microbe Interaction Coculture System (MIMICS). We demonstrated that both human intestinal epithelial cells (Caco-2) and the anaerobic bacterium A. muciniphila can remain viable for 12 h after coculture in the MIMICS. The transcriptomic and proteomic changes (cell-cell junctions, immune responses, and mucin secretion) in gut epithelial cells treated with A. muciniphila closely correspond with those reported in previous in vivo studies. In addition, our proteomic and metabolomic results revealed that A. muciniphila activates glucose and lipid metabolism in gut epithelial cells, leading to an increase in ATP production. This study suggests that A. muciniphila improves metabolism for ATP production in gut epithelial cells and that the MIMICS may be an effective general tool for evaluating the effects of anaerobic bacteria on gut epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Akkermansia/crescimento & desenvolvimento , Células CACO-2 , Técnicas de Cocultura , Humanos
11.
Nat Chem Biol ; 17(1): 104-112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139950

RESUMO

Tyrian purple, mainly composed of 6,6'-dibromoindigo (6BrIG), is an ancient dye extracted from sea snails and was recently demonstrated as a biocompatible semiconductor material. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and the difficulty of regiospecific bromination. Here, we introduce an effective 6BrIG production strategy in Escherichia coli using tryptophan 6-halogenase SttH, tryptophanase TnaA and flavin-containing monooxygenase MaFMO. Since tryptophan halogenases are expressed in highly insoluble forms in E. coli, a flavin reductase (Fre) that regenerates FADH2 for the halogenase reaction was used as an N-terminal soluble tag of SttH. A consecutive two-cell reaction system was designed to overproduce regiospecifically brominated precursors of 6BrIG by spatiotemporal separation of bromination and bromotryptophan degradation. These approaches led to 315.0 mg l-1 6BrIG production from tryptophan and successful synthesis of regiospecifically dihalogenated indigos. Furthermore, it was demonstrated that 6BrIG overproducing cells can be directly used as a bacterial dye.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , FMN Redutase/genética , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Oxirredutases/genética , Oxigenases/genética , Triptofano/metabolismo , Triptofanase/genética , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Clonagem Molecular , Corantes/isolamento & purificação , Corantes/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , FMN Redutase/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Halogenação , Índigo Carmim/isolamento & purificação , Índigo Carmim/metabolismo , Indóis/isolamento & purificação , Engenharia Metabólica/métodos , Oxirredutases/metabolismo , Oxigenases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Semicondutores , Estereoisomerismo , Triptofanase/metabolismo
12.
RSC Adv ; 10(46): 27864-27873, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516943

RESUMO

As demands for new antibiotics and strategies to control methicillin-resistant Staphylococcus aureus (MRSA) increase, there have been efforts to obtain more accurate and abundant information about the mechanism of the bacterial responses to antibiotics. However, most of the previous studies have investigated responses to antibiotics without considering the genetic differences between MRSA and methicillin-susceptible S. aureus (MSSA). Here, we initially applied a multi-omics approach into the clinical isolates (i.e., S. aureus WKZ-1 (MSSA) and S. aureus WKZ-2 (MRSA)) that are isogenic except for the mobile genetic element called staphylococcal cassette chromosome mec (SCCmec) type IV to explore the response to ß-lactam antibiotics (oxacillin). First, the isogenic pair showed a similar metabolism without oxacillin treatment. The quantitative proteomics demonstrated that proteins involved in peptidoglycan biosynthesis (MurZ, PBP2, SgtB, PrsA), two-component systems (VrsSR, WalR, SaeSR, AgrA), oxidative stress (MsrA1, MsrB), and stringent response (RelQ) were differentially regulated after the oxacillin treatment of the isogenic isolates. In addition, targeted metabolic profiling showed that metabolites belonging to the building blocks (lysine, glutamine, acetyl-CoA, UTP) of peptidoglycan biosynthesis machinery were specifically decreased in the oxacillin-treated MRSA. These results indicate that the difference in metabolism of this isogenic pair with oxacillin treatment could be caused only by SCCmec type IV. Understanding and investigating the antibiotic response at the molecular level can, therefore, provide insight into drug resistance mechanisms and new opportunities for antibiotics development.

13.
RSC Adv ; 10(40): 23792-23800, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517354

RESUMO

The halophilic bacterium Pseudoalteromonas phenolica is well known as a promising candidate that enables the recycling of organic wastes at high salinity. However, for industrial applications of P. phenolica further research is required to explore the biological mechanism for maximizing the activities and productivities of this bacterium. In this study, we investigated the osmotic stress resistance and specific protease activities of P. phenolica in a normal-salt medium (0.3 M NaCl) and high-salt medium (1 M NaCl) based on intra- and extracellular multi-omics approaches. Proteins related to betaine and proline biosynthesis were increased under high salt stress. The targeted metabolite analysis found that proline was overproduced and accumulated outside the cell at high salinity, and betaine was accumulated in the cell by activation of biosynthesis as well as uptake. In addition, extracellular serine proteases were shown to be upregulated in response to salt stress by the extracellular proteomic analysis. The specific proteolytic activity assay indicated that the activities of serine proteases, useful enzymes for the recycling of organic wastes, were increased remarkably under high salt stress. Our results suggest that betaine and proline are key osmoprotectant metabolites of P. phenolica, and they can be used for the improvement of protease production and P. phenolica activities for the recycling of high-salt organic wastes in the future.

14.
Analyst ; 144(7): 2231-2238, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30849133

RESUMO

Serum is one of the most commonly used samples in many studies to identify protein biomarkers to diagnose cancer. Although conventional enzyme-linked immunosorbent assay (ELISA) or liquid chromatography-mass spectrometry (LC-MS)-based methods have been applied as clinical tools for diagnosing cancer, there have been troublesome problems, such as inferior multiplexing capabilities, high development costs and long turnaround times, which are inappropriate for high-throughput analytical platforms. Here, we developed a simple and robust cancer diagnostic method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based total serum protein fingerprinting. First, serum samples were simply diluted with distilled water and subsequently spotted onto a MALDI plate without prior chromatographic purification or separation. The sample preparation method was enough to collect reproducible total serum protein fingerprints and would be highly advantageous for high-throughput assay. Each of the integrated main spectrum profiles (MSPs), which are representative of liver cancer patients (n = 40) or healthy controls (n = 80), was automatically generated by the MALDI Biotyper 3 software. The reliability of the integrated MSPs was successfully evaluated in comparison with a blind test set (n = 31), which consisted of 13 liver cancer patients and 18 healthy controls. Additionally, our partial least squares discriminant analysis (PLS-DA) demonstrated a statistically significant difference in MALDI-TOF MS-based total serum protein fingerprints between liver cancer patients and healthy controls. Taken together, this work suggests that this method may be an effective high-throughput platform technology for various cancer diagnoses and disease evaluations.


Assuntos
Proteínas Sanguíneas/análise , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estudos de Casos e Controles , Humanos
15.
RSC Adv ; 9(34): 19762-19771, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519361

RESUMO

Gut microbiota, a complex microbial community inhabiting human or animal intestines recently regarded as an endocrine organ, has a significant impact on human health. Probiotics can modulate gut microbiota and the gut environment by releasing a range of bioactive compounds. Escherichia coli (E. coli) strain Nissle 1917 (EcN), a Gram-negative bacterial strain, has been used to treat gastrointestinal (GI) disorders (i.e., inflammatory bowel disease, diarrhea, ulcerative colitis, and so on). However, endotoxicity of lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria in the gut, is known to have a strong influence on gut inflammation and maintenance of gut homeostasis. Therefore, characterizing the chemical structure of lipid A which determines the toxicity of LPS is needed to understand nonpathogenic colonization and commensalism properties of EcN in the gut more precisely. In the present study, MALDI multiple-stage mass spectrometry analysis of lipid A extracted from EcN demonstrates that hexaacylated lipid A (m/z 1919.19) contains a glucosamine disaccharide backbone, a myristate, a laurate, four 3-hydroxylmyristates, two phosphates, and phosphoethanolamine (PEA). PEA modification of lipid A is known to contribute to cationic antimicrobial peptide (CAMP) resistance of Gram-negative bacteria. To confirm the role of PEA in CAMP resistance of EcN, minimum inhibitory concentrations (MICs) of polymyxin B and colistin were determined using a wild-type strain and a mutant strain with deletion of eptA gene encoding PEA transferase. Our results confirmed that MICs of polymyxin B and colistin for the wild-type were twice as high as those for the mutant. These results indicate that EcN can more efficiently colonize the intestine through PEA-mediated tolerance despite the presence of CAMPs in human gut such as human defensins. Thus, EcN can be used to help treat and prevent many GI disorders.

16.
Sci Rep ; 8(1): 11088, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038332

RESUMO

Although several biomarkers can be used to distinguish cholangiocarcinoma (CCA) from healthy controls, differentiating the disease from benign biliary disease (BBD) or pancreatic cancer (PC) is a challenge. CCA biomarkers are associated with low specificity or have not been validated in relation to the biological effects of CCA. In this study, we quantitatively analyzed 15 biliary bile acids in CCA (n = 30), BBD (n = 57) and PC (n = 17) patients and discovered glycocholic acid (GCA) and taurochenodeoxycholic acid (TCDCA) as specific CCA biomarkers. Firstly, we showed that the average concentration of total biliary bile acids in CCA patients was quantitatively less than in other patient groups. In addition, the average composition ratio of primary bile acids and conjugated bile acids in CCA patients was the highest in all patient groups. The average composition ratio of GCA (35.6%) in CCA patients was significantly higher than in other patient groups. Conversely, the average composition ratio of TCDCA (13.8%) in CCA patients was significantly lower in all patient groups. To verify the biological effects of GCA and TCDCA, we analyzed the gene expression of bile acid receptors associated with the development of CCA in a CCA cell line. The gene expression of transmembrane G protein coupled receptor (TGR5) and sphingosine 1-phosphate receptor 2 (S1PR2) in CCA cells treated with GCA was 8.6-fold and 3.4-fold higher compared with control (untreated with bile acids), respectively. Gene expression of TGR5 and S1PR2 in TCDCA-treated cells was not significantly different from the control. Taken together, our study identified GCA and TCDCA as phenotype-specific biomarkers for CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/metabolismo , Ácido Glicocólico/metabolismo , Ácido Tauroquenodesoxicólico/metabolismo , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA