Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8479, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439994

RESUMO

Analogies across disciplines often indicate the existence of universal principles such as optimization, while the underlying proximate mechanisms may differ. It was reported recently that trails of ants refract at the border of substrates, on which walking speeds differ. This phenomenon is analogous to the travel-time-minimizing routes of light refracting at the borders between different media. Here, we further demonstrate that ant tracks converge or diverge across lens-shaped impediments similar to light rays through concave or convex optical lenses. The results suggest that the optical principle of travel time reduction may apply to ants. We propose a simple mathematical model that assumes nonlinear positive feedback in pheromone accumulation. It provides a possible explanation of the observed similarity between ant behavior and optics, and it is the first quantitative theoretical demonstration that pheromone-based proximate mechanisms of trail formation may produce this similarity. However, the future detailed empirical observations of ant behavior on impediment edges during the process of pheromone trail formation are needed in order to evaluate alternative explanations for this similarity.


Assuntos
Formigas/efeitos dos fármacos , Formigas/fisiologia , Comportamento Animal/efeitos dos fármacos , Modelos Teóricos , Óptica e Fotônica , Feromônios/farmacologia , Animais , Comportamento Alimentar , Locomoção
2.
PeerJ ; 8: e8915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32309047

RESUMO

Some defended prey animals can switch on their normally hidden aposematic signals. This switching may occur in reaction to predators' approach (pre-attack signals) or attack (post-attack signals). Switchable aposematism has been relatively poorly studied, but we can expect that it might bring a variety of benefits to an aposmetic organism. First, the switching could startle the predators (deimatism). Second, it could facilitate aversive learning. Third, it could minimize exposure or energetic expense, as the signal can be switched off. These potential benefits might offset costs of developing, maintaining and utilizing the switchable traits. Here we focused on the third benefit of switchability, the cost-saving aspect, and developed an individual-based computer simulation of predators and prey. In 88,128 model runs, we observed evolution of permanent, pre-attack, or post-attack aposematic signals of varying strength. We found that, in general, the pre-attack switchable aposematism may require moderate predator learning speed, high basal detectability, and moderate to high signal cost. On the other hand, the post-attack signals may arise under slow predator learning, low basal detectability and high signal cost. When predator population turnover is fast, it may lead to evolution of post-attack aposematic signals that are not conforming to the above tendency. We also suggest that a high switching cost may exert different selection pressure on the pre-attack than the post-attack switchable strategies. To our knowledge, these are the first theoretical attempts to systematically explore the evolution of switchable aposematism relative to permanent aposematism in defended prey. Our simulation model is capable of addressing additional questions beyond the scope of this article, and we open the simulation software, program manual and source code for free public use.

3.
Anim Cells Syst (Seoul) ; 22(4): 267-272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30460107

RESUMO

A typical colony of Neotropical army ants (subfamily Ecitoninae) regularly raids a large area around their bivouac by forming a narrow directional column that can reach up to one hundred meters in length. The raid is finished and then relaunched 12-17 times, each time toward different orientation. After completing all bouts the colony relocates to a new area. A hypothetical alternative to this foraging mode is raiding radially and symmetrically by expanding the search front in every direction like a circular bubble. Using an existing agent-based modeling software that simulates army ants' behavior, we compared the two possible modes of foraging in different food distributions. Regardless of the food patch abundance, the radial raiding was superior to the directional raiding when food patches had low quality, and the directional raiding was favorable when the patches were rich. In terms of energy efficiency, the radial raiding was the better strategy in a wide range of conditions. In contrast, the directional raiding tended to yield more food per coverage area. Based on our model, we suggest that the directional raiding by army ants is an adaptation to the habitats with abundance of high-quality food patches. This conclusion fits well with the ecology of army ants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA