Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605224

RESUMO

The transition of mouse embryonic stem cells (ESCs) between serum/LIF and 2i(MEK and GSK3 kinase inhibitor)/LIF culture conditions serves as a valuable model for exploring the mechanisms underlying ground and confused pluripotent states. Regulatory networks comprising core and ancillary pluripotency factors drive the gene expression programs defining stable naïve pluripotency. In our study, we systematically screened factors essential for ESC pluripotency, identifying TEAD2 as an ancillary factor maintaining ground-state pluripotency in 2i/LIF ESCs and facilitating the transition from serum/LIF to 2i/LIF ESCs. TEAD2 exhibits increased binding to chromatin in 2i/LIF ESCs, targeting active chromatin regions to regulate the expression of 2i-specific genes. In addition, TEAD2 facilitates the expression of 2i-specific genes by mediating enhancer-promoter interactions during the serum/LIF to 2i/LIF transition. Notably, deletion of Tead2 results in reduction of a specific set of enhancer-promoter interactions without significantly affecting binding of chromatin architecture proteins, CCCTC-binding factor (CTCF), and Yin Yang 1 (YY1). In summary, our findings highlight a novel prominent role of TEAD2 in orchestrating higher-order chromatin structures of 2i-specific genes to sustain ground-state pluripotency.

2.
Nucleic Acids Res ; 52(D1): D1218-D1226, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37831087

RESUMO

DNA damage and its improper repair are the major source of genomic alterations responsible for many human diseases, particularly cancer. To aid researchers in understanding the underlying mechanisms of genome instability, a number of genome-wide profiling approaches have been developed to monitor DNA damage and repair events. The rapid accumulation of published datasets underscores the critical necessity of a comprehensive database to curate sequencing data on DNA damage and repair intermediates. Here, we present DNA Damage Atlas (DDA, http://www.bioinformaticspa.com/DDA/), the first large-scale repository of DNA damage and repair information. Currently, DDA comprises 6,030 samples from 262 datasets by 59 technologies, covering 16 species, 10 types of damage and 135 treatments. Data collected in DDA was processed through a standardized workflow, including quality checks, hotspots identification and a series of feature characterization for the hotspots. Notably, DDA encompasses analyses of highly repetitive regions, ribosomal DNA and telomere. DDA offers a user-friendly interface that facilitates browsing, searching, genome browser visualization, hotspots comparison and data downloading, enabling convenient and thorough exploration for datasets of interest. In summary, DDA will stand as a valuable resource for research in genome instability and its association with diseases.


Assuntos
Dano ao DNA , Bases de Dados Genéticas , Humanos , Instabilidade Genômica , Genômica
3.
Nat Commun ; 14(1): 7164, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935677

RESUMO

Polycomb repressive complex 1 (PRC1) comprises two different complexes: CBX-containing canonical PRC1 (cPRC1) and RYBP/YAF2-containing variant PRC1 (vPRC1). RYBP-vPRC1 or YAF2-vPRC1 catalyzes H2AK119ub through a positive-feedback model; however, whether RYBP and YAF2 have different regulatory functions is still unclear. Here, we show that the expression of RYBP and YAF2 decreases and increases, respectively, during neural differentiation of embryonic stem cells (ESCs). Rybp knockout impairs neural differentiation by activating Wnt signaling and derepressing nonneuroectoderm-associated genes. However, Yaf2 knockout promotes neural differentiation and leads to redistribution of RYBP binding, increases enrichment of RYBP and H2AK119ub on the RYBP-YAF2 cotargeted genes, and prevents ectopic derepression of nonneuroectoderm-associated genes in neural-differentiated cells. Taken together, this study reveals that RYBP and YAF2 function differentially in regulating mESC neural differentiation.


Assuntos
Células-Tronco Embrionárias , Complexo Repressor Polycomb 1 , Diferenciação Celular/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo
4.
Cancer Epidemiol Biomarkers Prev ; 32(12): 1777-1782, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791915

RESUMO

Community outreach and engagement (COE) is a fundamental activity of cancer centers as they aim to reduce cancer disparities in their geographic catchment areas. As part of COE, NCI-Designated Cancer Centers must monitor the burden of cancer in their catchment area, implement and evaluate evidence-based strategies, stimulate catchment area relevant research, support clinical trial enrollment, and participate in policy and advocacy initiatives, in addition to other responsibilities. The Cancer Center Community Impact Forum (CCCIF) is a national annual meeting of COE professionals who work at or with cancer centers across the country. CCCIF grew out of earlier discussions at American Society of Preventive Oncology (ASPO) annual meetings, where COE was often discussed, but not exclusively. The third annual CCCIF meeting-hosted by the Sidney Kimmel Cancer Center at Thomas Jefferson University-was held in June 2022 in Philadelphia, PA, where more than 200 participants listened to dynamic presentations across 12 COE-related panel sessions. CCCIF leadership and ASPO AD/PL Workshop Planners worked together on the agenda. The 12 sessions used a COE lens to focus on: Diversity, Equity, and Inclusion; Policy; State Cancer Coalitions; Evaluation and Metrics; Implementation Science; In-reach; Outreach; Training and Education; Funding, Personnel and Resources; Clinical Trials; Innovative Methods; and Lessons from the COVID-19 pandemic. This article is a summary of main points and key lessons from each session, as well as a summary of overarching themes that were evident across the sessions.


Assuntos
Relações Comunidade-Instituição , Neoplasias , Humanos , Estados Unidos , Pandemias , Neoplasias/epidemiologia , Neoplasias/prevenção & controle , Escolaridade
5.
Front Endocrinol (Lausanne) ; 14: 1194364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680889

RESUMO

Objective: The present study aimed to investigate the effects of blood flow restriction training on muscle strength, bone tissue structure material, and biomechanical properties in rats applying various exercise interventions and to analyze the process by identifying the bone turnover markers, it provides a theoretical basis for the application of BFRT in clinical rehabilitation. Methods: A total of 24, 3-month-old male SD (Sprague Dawley) rats were randomly divided into pressurized control group (CON, n=6), low-intensity training group (LIRT, n=6), high-intensity training group (HIRT, n=6), and blood flow restriction training group (LIBFR, n=6) for 8-week ladder-climbing exercises. The pressured control group were given only ischemia treatments and did not undertake any burden. The low-intensity training group was allowed to climb the ladder with 30% of the maximum voluntary carrying capacity (MVCC). The rats in the high-intensity training group were allowed to climb the ladder with 70% MVCC. The blood flow restriction training group climbed the ladder with 30% MVCC while imposing blood flow restriction. Before sampling, the final MVCC was measured using a ladder-climbing protocol with progressively increasing weight loading. The serum, muscle, and bone were removed for sampling. The concentrations of the bone turnover markers PINP, BGP, and CTX in the serum were measured using ELISA. The bone mineral density and microstructure of femur bones were measured using micro-CT. Three-point bending and torsion tests were performed by a universal testing machine to measure the material mechanics and structural mechanics indexes of the femur bone. Results: The results of maximum strength test showed that the MVCC in LIRT, HIRT, and LIBFR groups was significantly greater than in the CON group, while the MVCC in the HIRT group was significantly higher than that in the LIRT group (P<0.05). According to the results of the bone turnover marker test, the concentrations of bone formation indexes PINP (amino-terminal extension peptide of type I procollagen) and BGP (bone gla protein) were significantly lower in the CON group than in the HIRT group (P<0.01), while those were significantly higher in the LIRT group compared to the HIRT group (P<0.01). In terms of bone resorption indexes, significant differences were identified only between the HIRT and other groups (P<0.05). The micro-CT examination revealed that the HIRT group had significantly greater bone density index values than the CON and LIRT groups (P<0.05). The results of three-point bending and torsion test by the universal material testing machine showed that the elastic modulus and maximum load indexes of the HIRT group were significantly smaller than those of the LIBFR group (P<0.05). The fracture load indexes in the HIRT group were significantly smaller than in the LIBFR group (P<0.05). Conclusion: 1. LIRT, HIRT, LIBFR, and CON all have significant differences, and this training helps to improve maximum strength, with HIRT being the most effective. 2. Blood flow restriction training can improve the expression of bone turnover markers, such as PINP and BGP, which promote bone tissue formation. 3. Blood flow restriction training can improve muscle strength and increase the positive development of bone turnover markers, thereby improving bone biomechanical properties such as bone elastic modulus and maximum load.


Assuntos
Terapia de Restrição de Fluxo Sanguíneo , Remodelação Óssea , Masculino , Ratos , Animais , Humanos , Fenômenos Biomecânicos , Ratos Sprague-Dawley
6.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679394

RESUMO

As one of the most remarkable indicators of physiological health, heart rate (HR) has become an unfailing investigation for researchers. Unlike many existing methods, this article proposes an approach to implement short-time HR estimation from electrocardiography in time series missing patterns. Benefiting from the rapid development of deep learning, we adopted a bidirectional long short-term memory model (Bi-LSTM) and temporal convolution network (TCN) to recover complete heartbeat signals from those with durations are less than one cardiac cycle, and the estimated HR from recovered segment combining the input and the predicted output. We also compared the performance of Bi-LSTM and TCN in PhysioNet dataset. Validating the method over a resting heart rate range of 60−120 bpm in the database without significant arrhythmias and a corresponding range of 30−150 bpm in the database with arrhythmias, we found that networks provide an estimated approach for incomplete signals in a fixed format. These results are consistent with real heartbeats in the normal heartbeat dataset (γ > 0.7, RMSE < 10) and in the arrhythmia database (γ > 0.6, RMSE < 30), verifying that HR could be estimated by models in advance. We also discussed the short-time limits for the predictive model. It could be used for physiological purposes such as mobile sensing in time-constrained scenarios, and providing useful insights for better time series analyses in missing data patterns.


Assuntos
Arritmias Cardíacas , Processamento de Sinais Assistido por Computador , Humanos , Frequência Cardíaca/fisiologia , Arritmias Cardíacas/diagnóstico , Eletrocardiografia/métodos , Bases de Dados Factuais , Algoritmos
7.
Cell Rep ; 39(1): 110626, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385732

RESUMO

CTCF mediates chromatin insulation and long-distance enhancer-promoter (EP) interactions; however, little is known about how these regulatory functions are partitioned among target genes in key biological processes. Here, we show that Ctcf expression is progressively increased during induced pluripotency. In this process, CTCF first functions as a chromatin insulator responsible for direct silencing of the somatic gene expression program and, interestingly, elevated Ctcf expression next ensures chromatin accessibility and contributes to increased EP interactions for a fraction of pluripotency-associated genes. Therefore, CTCF functions in a context-specific manner to modulate the 3D genome to enable cellular reprogramming. We further discover that these context-specific CTCF functions also enlist SMARCA5, an imitation switch (ISWI) chromatin remodeler, together rewiring the epigenome to facilitate cell-fate switch. These findings reveal the dual functions of CTCF in conjunction with a key chromatin remodeler to drive reprogramming toward pluripotency.


Assuntos
Fator de Ligação a CCCTC , Reprogramação Celular , Cromatina , Elementos Facilitadores Genéticos , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Reprogramação Celular/genética , Elementos Facilitadores Genéticos/genética , Humanos , Camundongos , Regiões Promotoras Genéticas
8.
Chemosphere ; 286(Pt 1): 131541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293565

RESUMO

To effectively degrade organic pollutants in wastewater, visible-light-driven Bi2MoO6/PPy hierarchical heterogeneous photocatalysts were prepared through a solvothermal method and the following in-situ chemical oxidation polymerization. Compared with pristine Bi2MoO6 photocatalyst, the composite photocatalysts exhibited dramatically improved photocatalytic activity and photostability towards the degradation of methylene blue dye and tetracycline antibiotic. Bi2MoO6/PPy-80 sample achieved the highest photocatalytic degradation rates for methylene blue dye (93.6%) and tetracycline antibiotic (88.3%) under visible light irradiation. These two organic pollutants could be completely degraded into nontoxic small molecules according to in-depth HPLC-MS analysis of degradation products. The transient photocurrent responses, electrochemical impedance spectra, and photoluminescence spectra demonstrated that the introduction of PPy nanoparticles on the surface of Bi2MoO6 nanosheets could effectively accelerate the separation of photo-generated electron-hole pairs. Furthermore, a possible synergetic photocatalytic mechanism was put forward based on the electron spin resonance and XPS valence-band spectra. This work indicated that construction of hierarchical composite photocatalysts combining polypyrrole conductive polymer and Bi2MoO6 semiconductor in nanoscale is an efficient approach to improve photocatalytic activity for environmental remediation.


Assuntos
Poluentes Ambientais , Polímeros , Bismuto , Catálise , Descontaminação , Microesferas , Molibdênio , Pirróis
9.
ACS Appl Mater Interfaces ; 13(50): 60581-60589, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889096

RESUMO

Electronic and traditional textiles have been widely manufactured through inkjet printing. However, nanoliter-scale ink droplets tend to excessively spread along the fiber direction, which results in poor image quality and low ink utilization. Here, hydroxyethyl cellulose (HEC) and hydroxypropyl methyl cellulose (HPMC) were introduced to control the spreading of nanoliter-scale droplets on cotton fabrics. The results showed that both HEC and HPMC could reduce the spreading of nanoliter droplets along the fibers through increasing the hydrophobicity of the fabric. However, the effect of HPMC was much better than that of HEC due to its higher surface activity. The flow of nanoliter droplets along the fibers was well consistent with the Washburn function. After HPMC treatment, the depositing length of one droplet reduced from beyond 200 µm to about 50 µm. The imaging quality was greatly improved. In addition, the dye utilization increased by 33-78% due to the decrease in the diffusion of dye solution to the back of the fabric. This study is of great significance for improving the quality of inkjet printing and the utilization of depositing materials, particularly expensive materials.

10.
J Biomech ; 129: 110779, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34607282

RESUMO

With marathon-running grew in popularity, the effect of long-distance running on plantar pressure has been more attractive. It has been proposed that long-distance running influences the deviation in the center of pressure (COP) during standing and the changes to plantar pressure during walking. The objective of this study was to observe the effects on the COP motion amplitude of static standing and the plantar pressure distribution of walking after long-distance running. The influence of a 10-km run on changes to plantar pressure was assessed during standing and walking. Plantar pressure was measured before and immediately after running. In the study, seven males and five females participated in barefoot tests of static standing and dynamic walking. In the static standing tests, COP was measured under the following four ordered conditions: (1) bipedal, eyes open, standing; (2) bipedal, eyes closed, standing; (3) unipedal, eyes open, standing and (4) unipedal, eyes closed, standing. Under each condition, the data was collected while a stable standing posture for 10 s. In the dynamic walking tests, the contact duration and plantar pressure were recorded. The standing tests results revealed no significant differences between males and females while slight differences before vs. after running. Running for a single time had no effect on COP deviation during standing. The walking tests results revealed an initial landing on the lateral heel. After landing on the lateral heel, the females quickly transferred to the medial heel. The movement of the pressure to the medial heel was slower in males than females. After running, the pressure of females was more inward, while that of males was more outward under the metatarsal zones in the propulsion phase.


Assuntos
, Ossos do Metatarso , Feminino , Calcanhar , Humanos , Masculino , Posição Ortostática , Caminhada
11.
Front Mol Biosci ; 7: 618088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344510

RESUMO

The bromodomain-containing protein BRD4 has been thought to transmit epigenetic information across cell divisions by binding to both mitotic chromosomes and interphase chromatin. UV-released BRD4 mediates the recruitment of active P-TEFb to the promoter, which enhances transcriptional elongation. However, the dynamic associations between BRD4 and P-TEFb and BRD4-mediated gene regulation after UV stress are largely unknown. In this study, we found that BRD4 dissociates from chromatin within 30 min after UV treatment and thereafter recruits chromatin. However, P-TEFb binds tightly to chromatin right after UV treatment, suggesting that no interactions occur between BRD4 and P-TEFb within 30 min after UV stress. BRD4 knockdown changes the distribution of P-TEFb among nuclear soluble and chromatin and downregulates the elongation activity of RNA polymerase II. Inhibition of JNK kinase but not other MAP kinases impedes the interactions between BRD4 and P-TEFb. RNA-seq and ChIP assays indicate that BRD4 both positively and negatively regulates gene transcription in cells treated with UV stress. These results reveal previously unrecognized dynamics of BRD4 and P-TEFb after UV stress and regulation of gene transcription by BRD4 acting as either activator or repressor in a context-dependent manner.

12.
Nucleic Acids Res ; 48(17): 9606-9620, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32885250

RESUMO

CTCF plays a pivotal role in mediating chromatin interactions, but it does not do so alone. A number of factors have been reported to co-localize with CTCF and regulate CTCF loops, but no comprehensive analysis of binding partners has been performed. This prompted us to identify CTCF loop participants and regulators by co-localization analysis with CTCF. We screened all factors that had ChIP-seq data in humans by co-localization analysis with human super conserved CTCF (hscCTCF) binding sites, and identified many new factors that overlapped with hscCTCF binding sites. Combined with CTCF loop information, we observed that clustered factors could promote CTCF loops. After in-depth mining of each factor, we found that many factors might have the potential to promote CTCF loops. Our data further demonstrated that BHLHE40 affected CTCF loops by regulating CTCF binding. Together, this study revealed that many factors have the potential to participate in or regulate CTCF loops, and discovered a new role for BHLHE40 in modulating CTCF loop formation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Cromatina/genética , Genoma Humano , Células HEK293 , Células HeLa , Proteínas de Homeodomínio/genética , Humanos , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas
13.
ACS Appl Mater Interfaces ; 12(40): 45281-45295, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32914953

RESUMO

Digital inkjet printing of textiles possesses great advantages like high efficiency and flexible production, but the challenges like the risk of causing serious environmental problems due to the large usage of dyes and chemicals still remain a matter of concern. In response to this problem, herein, a novel kind of reactive dye@copolymer nanosphere was prepared through the adsorption of C. I. Reactive Red 218 dyes (RR218) onto cationic poly(styrene-butyl acrylate-vinylbenzyl trimethylammonium chloride) (PSBV) nanospheres and applied in inkjet printing on woven cotton fabric. Results show that the prepared RR218@PSBV nanospheres possessed homogeneous size and good stability for ink preparation. In comparison with the original RR218 solution, the color depth of RR218@PSBV-printed fabric increased by 1.4 times and the dye residues in the printing effluent were reduced by about 45%. Meanwhile, the consumptions of sodium carbonate and urea in conventional inkjet printing were reduced by about 3.3 and 22.8 mg/cm2, respectively, and the printing process was simplified with 30% energy saving. Furthermore, the mechanism of the color enhancement by nanospheres was revealed by the calculation of absorption and scattering coefficients based on the Kubelka-Munk function. This work provides a potential application of dye@polymer nanospheres to promote the optimization of the textile inkjet printing technique and alleviates the environmental impact of conventional textile coloration.

14.
Langmuir ; 36(32): 9481-9488, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32787136

RESUMO

In textile inkjet printing, understanding the effect of viscosity and surface tension of a reactive dye ink on droplet formation is of great significance. As an organic ecofriendly solvent, polyethylene glycol with a molecular weight of -400 g/mol (PEG400) was used to prepare reactive dye inks with or without Surfynol 465 (S465) to explain separately how viscosity and surface tension affect the droplet formation of a reactive dye ink. The intermolecular interactions in the ink and physical properties of the ink were investigated by measuring the visible absorption spectra, hydrodynamic radius, viscosity, and surface tension. Droplet formation under a single variable influence of viscosity or surface tension was observed by taking photographs using a high-speed camera. Results show that a high ink viscosity condition generates no satellite droplet formation and a slower droplet velocity, and a higher surface tension tends to cause ligament rupture from the nozzle tip and the droplet. Moreover, a twill cotton fabric printed using the PEG-S465-dye ink at a 30% PEG400 concentration showed higher ink penetration, dye fixation rate, ideal color strength, and rubbing fastness.

15.
Sci Adv ; 6(24): eaba0777, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32704541

RESUMO

R-loops modulate genome stability and regulate gene expression, but the functions and the regulatory mechanisms of R-loops in stem cell biology are still unclear. Here, we profiled R-loops during somatic cell reprogramming and found that dynamic changes in R-loops are essential for reprogramming and occurred before changes in gene expression. Disrupting the homeostasis of R-loops by depleting RNaseH1 or catalytic inactivation of RNaseH1 at D209 (RNaseH1D209N) blocks reprogramming. Sox2, but not any other factor in the Yamanaka cocktail, overcomes the inhibitory effects of RNaseH1 activity loss on reprogramming. Sox2 interacts with the reprogramming barrier factor Ddx5 and inhibits the resolvase activity of Ddx5 on R-loops and thus facilitates reprogramming. Furthermore, reprogramming efficiency can be modulated by dCas9-mediated RNaseH1/RNaseH1D209N targeting the specific R-loop regions. Together, these results show that R-loops play important roles in reprogramming and shed light on the regulatory module of Sox2/Ddx5 on R-loops during reprogramming.

16.
Polymers (Basel) ; 11(4)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022875

RESUMO

The jetting performance of dye inks determines the image quality, production efficiency, and lifetime of the print head. In the present study, we explored the jetting performance of mixed solutions of polyethylene glycol (PEG) and reactive dye by testing the visible absorption spectra, rheological properties, and surface tension, in addition to the observation of droplet formation. The results indicate that PEG macromolecules could change the aggregate groups of Red 218 molecules into smaller ones through hydrophobic interactions and separation effect. The addition of PEG into the dye solution increased the viscosity and decreased the surface tension. In the whole shear rate range tested, the 10% and 20% PEG400, as well as the 30% PEG200 dye solutions, showed good Newtonian fluid behavior. PEG macromolecules improved the droplet formation of the dye solutions. Increasing the PEG400 concentration to 30% and 40% resulted in elimination of the formation of satellites and the formation of ideal droplets at 10,000 Hz jetting frequency. A 30% PEG600-dye solution with the Z value of 4.6 formed the best spherical droplets at 10,000 Hz and produced perfect color images on cotton fabrics.

17.
Cell Death Dis ; 9(2): 187, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416007

RESUMO

Induced pluripotent stem cells can be derived from somatic cells through ectopic expression of transcription factors or chemical cocktails. Chemical iPSCs (C-iPSCs) and OSKM-iPSCs (4F-iPSCs) have been suggested to have similar characteristics to mouse embryonic stem cells (mESCs). However, their epigenetic equivalence remains incompletely understood throughout the genome. In this study, we have generated mouse C-iPSCs and 4F-iPSCs, and further compared the genome-wide DNA methylomes of C-iPSCs, 4F-iPSCs, and mESCs that were maintained in 2i and LIF. Three pluripotent stem cells tend to be low methylated overall, however, DNA methylations in some specific regions (such as retrotransposons) are cell type-specific. Importantly, C-iPSCs are more hypomethylated than 4F-iPSCs. Bisulfite sequencing indicated that DNA methylation status in several known imprinted clusters, such as: Dlk1-Dio3 and Peg12-Ube3a, in C-iPSCs are closer to those of mESCs than 4F-iPSCs. Overall, our data demonstrate the reprogramming methods-dependent epigenetic differences of C-iPSCs and 4F-iPSCs and reveal that C-iPSCs are more hypomethylated than OSKM-integrated iPSCs.


Assuntos
Metilação de DNA , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Animais , Reprogramação Celular , Epigênese Genética , Impressão Genômica , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Embrionárias Murinas/citologia
18.
Polymers (Basel) ; 10(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30961327

RESUMO

Low-water-soluble disperse dyes possess a broad color gamut and good durability, but they need chemical or physical modification before being used in inks and can only be applied to several kinds of hydrophobic fabrics. In this work, disperse dyes/P(St-BA-MAA) nanospheres (known as DPN) absorbed by sodium nitrilotriacetate (known as NTA@DPN) were prepared and applied into ink formulations, which exhibited high dye fixation, long-term stability and self-curable ability without addition of any binder. Transmission electron microscopy (TEM) images showed the nanospheres have homogeneous core-shell spherical shape and the average diameter increased by 20.6 nm after coloration. X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), and differential scanning calorimetry (DSC) measurements illustrated the interaction between dyes and nanospheres and indicated that the colored nanospheres contained both dye molecules and crystalline dyes. The Zeta potential and particle size measurements demonstrated that the dispersion stability was improved when sodium nitrilotriacetate (NTA) was absorbed onto DPN. The rheological behavior of the NTA@DPN inks was Newtonian and desired droplet formation was achieved at the viscosity of 4.23 mPa·s. Both hydrophilic cotton and hydrophobic polyester fabrics were cationic modified before used, which had an excellent image quality and desired rubbing fastness after inkjet printing. Scanning electron microscope (SEM) images showed NTA@DPN formed stable deposits on the surface of modified fibers and could self-cure to form continuous film coating on the fiber surface after being baked at 150 °C without addition of any binder.

19.
J Pediatr Orthop B ; 27(3): 231-235, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28379908

RESUMO

The aim of this study was to assess the impact of different sports on hip joint anatomic parameters in athletes. This was a cross-sectional study of eight male trampolinists, eight male weightlifters, and eight male volunteers enrolled in July 2014. Hip joint anatomic parameters were measured from plain radiographs taken at the level of the lesser trochanter center. Data were compared between groups using the χ-test or one-way analysis of variance with the Bonferroni post-hoc test. There were no significant differences among groups in age, height, or weight. Compared with the controls, trampolinists showed higher pelvic width, femoral neck length, metaphyseal width (T0), width 20 mm above T0 (T+20), width 20 mm below T0 (T-20) and center edge (CE) angle, and lower head-trochanter ratio, joint space, neck-shaft angle, and articular cartilage angle (P<0.05). Compared with the controls, weightlifters showed lower pelvic femoral index, joint space, length of femoral neck, eccentricity, neck-shaft, and AC angle, and higher pelvic width, femoral head radius, and CE angle (P<0.05). Compared with trampolinists, weightlifters showed higher head-trochanter ratio and femoral head radius, and lower pelvic femoral index, femoral neck length, eccentricity, T0, T+20, T-20, neck-shaft angle, CE angle, and articular cartilage angle (P<0.05). Long-term high-intensity training causes adaptive changes in the hip joint structure that differ between trampolinists and weightlifters.


Assuntos
Exercício Físico/fisiologia , Ginástica/fisiologia , Articulação do Quadril/anatomia & histologia , Relatório de Pesquisa , Levantamento de Peso/fisiologia , Suporte de Carga/fisiologia , Adolescente , Estudos Transversais , Ginástica/tendências , Humanos , Masculino , Fatores de Tempo , Levantamento de Peso/tendências , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA