Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int Immunopharmacol ; 131: 111831, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489969

RESUMO

BACKGROUND: Fibrin(ogen) deposition in the central nervous system (CNS) contributes to neuropathological injury; however, its role in ischemic stroke is unknown. In this study, we identified fibrinogen as a novel proinflammatory regulator of post-stroke neuroinflammation and revealed the neuro-protection effect of fibrin-derived γ377-395peptide in stroke. METHODS: Fibrinogen depletion and fibrinogen-derived γ377-395peptide treatment were performed 2 h after establishing a permanent middle cerebral artery occlusion (pMCAO) model. The infarction volume, neurological score, fibrin(ogen) deposition, and inflammatory response were evaluated 24 h after occlusion. Both in vivo and in vitro studies were conducted to assess the therapeutic potential of the γ377-395peptide in blocking the interactions between fibrin(ogen) and neutrophils. RESULTS: Fibrin(ogen) deposited in the infarct core promoted post-stroke inflammation and exacerbated neurological deficits in the acute phase after stroke onset. Reducing fibrinogen deposition resulted in a decrease in infarction volume, improved neurological scores, and reduced inflammation in the brain. Additionally, the presence of neutrophil accumulation near fibrin(ogen) deposits was observed in ischemic lesions, and the engagement of fibrin(ogen) by integrin receptor αMß2 promoted neutrophil activation and post-stroke inflammation. Finally, inhibiting fibrin(ogen)-mediated neutrophil activation using a fibrinogen-derived γ377-395peptide significantly attenuated neurological deficits. CONCLUSIONS: Fibrin(ogen) is a crucial regulator of post-stroke inflammation and contributes to secondary brain injury. The inflammation induced by fibrin(ogen) is primarily driven by neutrophils during acute ischemic stroke and can be ameliorated using the fibrin-derived γ377-395peptide. Targeting the fibrin(ogen)-mediated neuropathological process represents a promising approach for neuroprotective therapy after stroke while preserving its beneficial coagulation function.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Doenças Neuroinflamatórias , Inflamação/tratamento farmacológico , Inflamação/patologia , Fibrinogênio , Peptídeos , Fibrina , Acidente Vascular Cerebral/tratamento farmacológico , Infarto
2.
Artigo em Inglês | MEDLINE | ID: mdl-38529606

RESUMO

BACKGROUND: Transplantation of neural stem cells improves ischemic stroke outcomes in rodent models and is currently in the clinical test stage. However, the optimal delivery route to achieve improved efficacy remains undetermined. OBJECTIVE: This study aims to evaluate three more clinically feasible delivery routes: intravenous (IV), intranasal (IN), and intracerebroventricular (ICV). We compared the therapeutic efficacies of the three routes of transplanting human neural stem cells (hNSCs) into mice with permanent middle cerebral artery obstruction (pMCAO). METHODS: Behavioral tests and cresyl violet staining were used to evaluate the therapeutic efficacies of functional recovery and lesion volumes. The expression of proinflammatory cytokines and neurotrophic factors was measured by real-time PCR. The distribution and differentiation of hNSCs were determined by immunofluorescence staining. The effect on endogenous neurogenesis and astrocyte function were determined by immunofluorescence staining and western blot. RESULTS: hNSC transplantation using the three routes improved behavioral outcomes and reduced lesion volumes; IV transplantation of hNSCs results in earlier efficacy and improves the inflammatory microenvironment. The long-term distribution and differentiation of transplanted hNSCs in the peri-infarct areas can only be evaluated using ICV delivery. IV and ICV transplantation of hNSCs promote neurogenesis and modulate the dual function of astrocytes in the peri-infarct areas. CONCLUSION: IV and IN delivery is suitable for repeated administration of hNSCs to achieve improved prognosis. Comparatively, ICV transplantation provides long-term efficacy at lower doses and fewer administration times.

3.
Aging Dis ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37611902

RESUMO

Protecting the integrity of the blood-brain barrier (BBB) is crucial for maintaining brain homeostasis after ischemic stroke. Previous studies showed that M2 microglial extracellular vesicles (EVs) played a neuroprotective role in cerebral ischemia. However, the role of M2 microglial EVs in maintaining BBB integrity is unclear. Therefore, we explored the mechanisms of M2 microglial EVs in regulating BBB integrity. To identify microglial EVs, we used nanoparticle tracking analysis, transmission electron microscopy, and western blot analysis. Adult male ICR mice were subjected to 90-min middle cerebral artery occlusion (MCAO), followed by the injection of PKH26-labeled M2 microglial EVs via the tail vein. After MCAO, we assessed brain infarct and edema volume, as well as modified neurological severity score. BBB integrity was measured by assessing IgG leakage. The effects of M2 microglial EVs on astrocytes and endothelial cells were also examined. To investigate the molecular mechanisms, we performed RNA sequencing, miR-23a-5p knockdown, and luciferase reporter assays. Our results showed that PKH26-labeled microglial EVs were mainly taken up by neurons and glial cells. M2 microglial EVs treatment decreased brain infarct and edema volume, modified neurological severity score, and IgG leakage, while increasing the ZO-1, occludin, and claudin-5 expression after MCAO. Knockdown of miR-23a-5p reversed these effects. RNA sequencing revealed that the TNF, MMP3 and NFκB signaling pathway involved in regulating BBB integrity. Luciferase reporter assay showed that miR-23a-5p could bind to the 3' UTR of TNF. M2 microglial EVs-derived miR-23a-5p decreased TNF, MMP3 and NFκB p65 expression in astrocytes after oxygen-glucose deprivation, thereby increasing ZO-1 and Claudin-5 expression in bEnd.3 cells. In conclusion, our findings demonstrated that M2 microglial EVs attenuated BBB disruption after cerebral ischemia by delivering miR-23a-5p, which targeted TNF and regulated MMP3 and NFκB p65 expression.

4.
Stroke ; 54(10): 2629-2639, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586072

RESUMO

BACKGROUND: Small extracellular vesicles (sEVs) derived from M2 microglia (M2-microglia-derived small extracellular vesicles [M2-sEVs]) contribute to central nervous system repair, although the underlying mechanism remains unknown. In this study, we aimed to identify the mechanism through which microRNA-124 (miR-124) carried in sEVs promotes neural stem cell (NSC) proliferation and neuronal differentiation in the ischemic mouse brain. METHODS: M2-sEVs with or without miR-124 knockdown were injected intravenously for 7 consecutive days after transient middle cerebral artery occlusion surgery. The atrophy volume, neurological score, and degree of neurogenesis were examined at different time points after ischemic attack. NSCs treated with different sEVs were subjected to proteomic analysis. Target protein concentrations were quantified, and subsequent bioinformatic analysis was conducted to explore the key signaling pathways. RESULTS: M2-sEV transplantation promoted functional neurological recovery following transient middle cerebral artery occlusion injury. M2-sEV treatment decreased the brain atrophy volume, neurological score, and mortality rate. The effect was reserved by knockdown of miR-124 in M2-sEVs. M2-sEVs promoted proliferation and differentiation of mature neuronal NSCs in vivo. Proteomic analysis of NSC samples treated with M2-sEVs with and without miR-124 knockdown revealed that AAK1 (adaptor-associated protein kinase 1) was the key responding protein in NSCs. The binding of AAK1 to Notch promoted the differentiation of NSCs into neurons rather than astrocytes. CONCLUSIONS: Our data suggest that AAK1/Notch is the key pathway in NSCs that responds to the miR-124 carried within M2-sEVs in the ischemic brain. M2-sEVs carrying ample quantities of miR-124 promote functional recovery after ischemic stroke by enhancing NSC proliferation and differentiation. Targeting of M2-sEVs could represent a potential therapeutic strategy for brain recovery.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , MicroRNAs , Células-Tronco Neurais , Camundongos , Animais , Microglia/metabolismo , AVC Isquêmico/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Proteômica , Diferenciação Celular , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Nucl Med Biol ; 118-119: 108336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37028196

RESUMO

Microglia constantly survey the central nervous system microenvironment and maintain brain homeostasis. Microglia activation, polarization and inflammatory response are of great importance in the pathophysiology of ischemic stroke. For exploring biochemical processes in vivo, positron emission tomography (PET) is a superior imaging tool. Translocator protein 18 kDa (TSPO), is a validated neuroinflammatory biomarker which is widely used to evaluate various central nervous system (CNS) pathologies in both preclinical and clinical studies. TSPO level can be elevated due to peripheral inflammatory cells infiltration and glial cells activation. Therefore, a clear understanding of the dynamic changes between microglia and TSPO is critical for interpreting PET studies and understanding the pathophysiology after ischemic stroke. Our review discusses alternative biological targets that have attracted considerable interest for the imaging of microglia activation in recent years, and the potential value of imaging of microglia in the assessment of stroke therapies.


Assuntos
AVC Isquêmico , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Microglia/metabolismo , Encéfalo/metabolismo , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia
6.
Curr Stem Cell Res Ther ; 18(3): 380-390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35410620

RESUMO

BACKGROUND: Neural stem/progenitor cells (NSPCs) transplantation has been recognized in recent years as an effective strategy for the treatment of ischemic stroke. Several preclinical studies have demonstrated the feasibility, safety, and efficacy of NSPCs therapy. METHODS: We conducted a systematic review of the published literature in Pubmed reporting the use of NSPCs in preclinical studies between 2010 and 2021. Based on the articles reporting data, the key factors affecting efficacy were listed. RESULTS: A total of 71 preclinical studies, including 91 treatment arms, were identified. The results showed that several factors could influence the outcomes of NSPCs transplantation, including the type of donor cells, cell dose, time of administration after stroke, delivery route, and anesthetic. Treatment outcomes were measured by infarct volume, behavioral tests, and molecular and cellular level results. CONCLUSION: Most of the preclinical studies reported statistically significant effects and very few adverse reactions. Transplantation of NSPCs for ischemic stroke still needs to be optimized for several key factors. A standardized treatment outcome assessment could ease the translation of evidence in clinical settings.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/terapia , AVC Isquêmico/metabolismo , Células-Tronco Neurais/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Transplante de Células-Tronco/métodos , Resultado do Tratamento
7.
Front Immunol ; 13: 966781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248814

RESUMO

Background and objectives: Cerebrospinal fluid (CSF) and interstitial fluid exchange along a brain-wide network of perivascular spaces (PVS) termed the 'glymphatic system'. The aquaporin-4 (AQP4) water channels abundantly expressed on astrocytic endfeet play a key role in the CSF circulation in the glymphatic system. Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating autoimmune disease of the central nervous system (CNS) featured with a specific autoantibody directed against AQP4 in most of patients. Anti-AQP4 antibodies are likely resulting in the impairment of the brain glymphatic system and the enlargement of PVS in NMOSD patients. In the current study, we aimed to demonstrate the features of EPVS detected by MRI and its association with the CSF anti-AQP4 antibody titer, CNS inflammatory markers, and disease severity in NMOSD patients. Methods: We conducted a retrospective review of a consecutive cohort of 110 patients with NMOSD who had brain MRI. We assessed the correlation of EPVS with markers of neuroinflammation, blood-brain barrier (BBB) function and severity of neurological dysfunction in patients. We used multivariate logistic regression analysis to determine the independent variables associated with disease severity. Results: The median number of total-EPVS was 15.5 (IQR, 11-24.2) in NMOSD patients. The number of total-EPVS was significantly related to EDSS score after correcting for the effects of age and hypertension (r=0.353, p<0.001). The number of total-EPVS was also significantly associated with the titer of CSF anti-AQP4 antibody, the albumin rate (CSF/serum ratios of albumin), the CSF albumin, IgG and IgA levels. Logistic regression analysis showed that total-EPVS and serum albumin level were two independent factors to predict disease severity in NMOSD patients (OR=1.053, p=0.028; OR=0.858, p=0.009 respectively). Furthermore, ROC analysis achieved AUC of 0.736 (0.640-0.831, p<0.001) for total-EPVS to determine severe NMOSD (EDSS 4.5-9.5). Discussion: In our cohort, we found a relationship between EPVS and neuroinflammation and BBB function in NMOSD. Moreover, EPVS might independently predict neurological dysfunction in patients with NMOSD.


Assuntos
Neuromielite Óptica , Aquaporina 4 , Autoanticorpos , Biomarcadores , Humanos , Imunoglobulina A , Imunoglobulina G , Doenças Neuroinflamatórias , Albumina Sérica
8.
Front Neurol ; 13: 860083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547390

RESUMO

Background: Neuromyelitis Optica spectrum disorder (NMOSD) is severe relapsing and disabling autoimmune disease of the central nervous system. Its optimal first-line treatment to reduce relapse rate and ameliorate neurological disability remains unclear. We will conduct a prospective, multicenter, randomized, placebo-controlled clinical trial to study the safety and effectiveness of human umbilical cord mesenchymal stem cells (hUC-MSCs) in treating NMOSD. Methods: The trial is planned to recruit 430 AQP4-IgG seropositive NMOSD patients. It consists of three consecutive stages. The first stage will be carried out in the leading center only and aims to evaluate the safety of hUC-MSCs. Patients will be treated with three different doses of hUC-MSCs: 1, 2, or 5 × 106 MSC/kg·weight for the low-, medium-, and high-dose group, respectively. The second and third stages will be carried out in six centers. The second stage aims to find the optimal dosage. Patients will be 1:1:1:1 randomized into the low-, medium-, high-dose group and the controlled group. The third stage aims to evaluate the effectiveness. Patients will be 1:1 randomized into the optimal dose and the controlled group. The primary endpoint is the first recurrent time and secondary endpoints are the recurrent times, EDSS scores, MRI lesion numbers, OSIS scores, Hauser walking index, and SF-36 scores. Endpoint events and side effects will be evaluated every 3 months for 2 years. Discussion: Although hUC-MSC has shown promising treatment effects of NMOSD in preclinical studies, there is still a lack of well-designed clinical trials to evaluate the safety and effectiveness of hUC-MSC among NMOSD patients. As far as we know, this trial will be the first one to systematically demonstrate the clinical safety and efficacy of hUC-MSC in treating NMOSD and might be able to determine the optimal dose of hUC-MSC for NMOSD patients. Trial registration: The study was registered with the Chinese Clinical Trial Registry (CHICTR.org.cn) on 2 March 2016 (registration No. ChiCTR-INR-16008037), and the revised trial protocol (Protocol version 1.2.1) was released on 16 March 2020.

9.
Theranostics ; 12(7): 3553-3573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547763

RESUMO

Rationale: White matter repair is critical for the cognitive and neurological functional recovery after ischemic stroke. M2 microglia are well-documented to enhance remyelination and their extracellular vesicles (EVs) mediate cellular function after brain injury. However, whether M2 microglia-derived EVs could promote white matter repair after cerebral ischemia and its underlying mechanism are largely unknown. Methods: EVs were isolated from IL-4 treated microglia (M2-EVs) and untreated microglia (M0-EVs). Adult ICR mice subjected to 90-minute transient middle cerebral artery occlusion received intravenous EVs treatment for seven consecutive days. Brain atrophy volume, neurobehavioral tests were examined within 28 days following ischemia. Immunohistochemistry, myelin transmission electron microscope and compound action potential measurement were performed to assess white matter structural remodeling, functional repair and oligodendrogenesis. The effects of M2-EVs on oligodendrocyte precursor cells (OPCs) were also examined in vitro. EVs' miRNA sequencing, specific miR-23a-5p knockdown in M2-EVs and luciferase reporter assay were used to explore the underlying mechanism. Results: M2-EVs reduced brain atrophy volume, promoted functional recovery, oligodendrogenesis and white matter repair in vivo, increased OPC proliferation, survival and differentiation in vitro. miR-23a-5p was enriched in M2-EVs and could promote OPC proliferation, survival and maturation, while knocking down miR-23a-5p in M2-EVs reversed the beneficial effects of M2-EVs both in vitro and in vivo. Luciferase reporter assay showed that miR-23a-5p directly targeted Olig3. Conclusion: Our results demonstrated that M2 microglia could communicate to OPCs through M2-EVs and promote white matter repair via miR-23a-5p possibly by directly targeting Olig3 after ischemic stroke, suggesting M2-EVs is a novel and promising therapeutic strategy for white matter repair in stroke and demyelinating disease.


Assuntos
Isquemia Encefálica , Vesículas Extracelulares , AVC Isquêmico , MicroRNAs , Substância Branca , Animais , Atrofia/patologia , Isquemia Encefálica/patologia , Vesículas Extracelulares/patologia , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/farmacologia , Microglia , Substância Branca/patologia
10.
Neuroscience ; 490: 193-205, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35182700

RESUMO

Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and blood-brain barrier integrity in ICH mice via the JNK/ERK/p38 MAPK signaling pathway at 24 h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated (p-) JNK, ERK, p38 MAPK and IKKα expression. Suppression of FGL2 or TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH, while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were increased. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72 h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.


Assuntos
Lesões Encefálicas , Fibrinogênio/metabolismo , Receptor PAR-1 , Animais , Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Quinase I-kappa B , Camundongos , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Stem Cell Rev Rep ; 18(5): 1774-1788, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35122628

RESUMO

Neural stem cell (NSC) therapies are developing rapidly and have been proposed as a treatment option for various neurological diseases, such as stroke, Parkinson's disease and multiple sclerosis. However, monitoring transplanted NSCs, exploring their location and migration, and evaluating their efficacy and safety have all become serious and important issues. Two main problems in tracking NSCs have been noted: labeling them for visibility and imaging them. Direct labeling and reporter gene labeling are the two main methods for labeling stem cells. Magnetic resonance imaging and nuclear imaging, including positron emission tomography, single-photon emission computed tomography, and optical imaging, are the most commonly used imaging techniques. Each has its strengths and weaknesses. Thus, multimodal imaging, which combines two or more imaging methods to complement the advantages and disadvantages of each, has garnered increased attention. Advances in image fusion and nanotechnology, as well as the exploration of new tracers and new imaging modalities have substantially facilitated the development of NSC tracking technology. However, the safety issues related to tracking and long-term tracking of cell viability are still challenges. In this review, we discuss the merits and defects of different labeling and imaging methods, as well as recent advances, challenges and prospects in NSC tracking.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Sobrevivência Celular , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons
12.
Brain Imaging Behav ; 16(4): 1528-1537, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35083712

RESUMO

Pentagon Copying Test (PCT) is commonly used to assess visuospatial deficits, but the neural substrates underlying pentagon copying are not well understood. The Qualitative Scoring Pentagon Test (QSPT), an optimized scoring system, classifies five categories of errors patients make in pentagons copying and grades them depending on the errors' severity. To determine the strategic brain regions involved in the PCT, we applied the QSPT system to evaluate the visuospatial impairment of 136 acute ischemic stroke patients on the PCT and used Support Vector Regression Lesion-Symptom Mapping to investigate relevant brain regions. The total QSPT score was correlated with the right supramarginal gyrus. The angle number errors and closure errors were principally associated with lesions of the posterior temporoparietal cortex, including the right middle occipital gyrus and middle temporal gyrus, while the intersection errors and rotation errors were related to the more anterior part of the right temporoparietal lobe with the additional frontal cortex. In conclusion, the right temporoparietal cortex is the strategic region for pentagon copying tasks. The angle number and closure represent the visuospatial processing of within-object features, while intersection and rotation require between-object manipulation. The posterior-anterior distinction in the right temporoparietal region underlies the differences of within-object and between-object processing.


Assuntos
AVC Isquêmico , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia
13.
Eur J Neurol ; 29(1): 267-276, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543501

RESUMO

BACKGROUND: We conducted this study to describe detailed the clinical characteristics, ancillary test results and treatment response of a group of Chinese patients with anti-IgLON5 disease. METHODS: We recruited 13 patients with positive IgLON5 antibodies in serum and/or cerebrospinal fluid from nine tertiary referral centers. Patients were enrolled from February 2017 to July 2021. We retrospectively collected information on the presenting and main symptoms, treatment response and follow-up outcomes. RESULTS: The median age of onset for symptoms was 60 (range: 33-73) years and six of the 13 patients were females. The predominant clinical presentations included sleep disturbance (eight patients) and cognitive impairment (seven patients), followed by movement disorders (six patients). Parainfectious cause seemed plausible. Notably, we identified the first case of possible Epstein-Barr virus (EBV)-related anti-IgLON5 disease. Coexisting neural autoantibodies were identified in two patients. Furthermore, two patients had other autoimmune diseases. The IgG subclass was determined in four patients, including two with dominant IgG4 subtype and two with dominant IgG1 subtype. Additionally, 10 patients were treated with immunotherapy and four patients exhibited improvement. Overall, six of 10 patients for whom follow-up results were assessable had favorable clinical outcomes (modified Rankin Scale score ≤2). CONCLUSIONS: The clinical spectrum of anti-IgLON5 disease is variable. Our results highlight a boarder spectrum of anti-IgLON5 disease.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hashimoto , Adulto , Idoso , Autoanticorpos , Moléculas de Adesão Celular Neuronais , Feminino , Herpesvirus Humano 4 , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
14.
Aging Dis ; 12(8): 2096-2112, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881088

RESUMO

Ischemic-induced white matter injury is strongly correlated with the poor neurological outcomes in stroke patients. The transplantation of oligodendrocyte precursor cells (OPCs) is an effective candidate for enhancing re-myelination in congenitally dysmyelinated brain and spinal cord. Nevertheless, mechanisms governing the recovery of white matter and axon after OPCs transplantation are incompletely understood in ischemic stroke. In this study, OPCs were transplanted into the ischemic brain at 7 days after transient middle cerebral artery occlusion (tMCAO). We observed improved behavior recovery and reduced brain atrophy volume at 28 days after OPCs transplantation. Moreover, our results identified that myelin sheath integrity and endogenous OPCs proliferation and migration were promoted after OPCs transplantation. By contrast, AMD3100, an antagonist of C-X-C chemokine receptor type 4, eliminated the beneficial effects of OPCs transplantation on white matter integrity and endogenous oligodendrogenesis. In addition, the improvement of neurite growth and synaptogenesis after OPCs transplantation in ischemic brain or OPC co-cultured neurons, potentially through the upregulation of Netrin-1, was indicated by increased protein levels of synaptophysin and postsynaptic density protein 95. Knockdown of Deleted in Colorectal Carcinoma, a receptor of Netrin-1, prevented increased neurite growth and synaptogenesis in neurons co-cultured with OPCs. In conclusion, our studies suggested that engrafted OPCs promoted the recovery after ischemic stroke by enhancing endogenous oligodendrogenesis, neurite growth, and synaptogenesis; the last two being mediated by the Netrin-1/DCC axis.

15.
Front Neurol ; 12: 713355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630287

RESUMO

Object: Spinal dural arteriovenous fistula (SDAVF) is the most common spinal vascular shunt lesion. Although pathological changes in the SDAVF draining vein (SDAVF-DV) have been elucidated, protein changes remain enigmatic. We investigated the pathology and protein changes in the SDAVF-DV under sustained high vascular pressure. Methods: Three SDAVF-DV samples were compared with superficial temporal artery (STA) and superficial temporal vein (STV) samples as controls. Vascular structure was revealed by hematoxylin and eosin (H&E) and Masson staining; and cell distribution, extracellular matrix, and inflammation infiltration were observed by immunohistochemistry. Label-free quantitative proteomics was performed, and the peptide mixture was fractionated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins. Bioinformatics analysis of the differentially expressed proteins was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks. Results: H&E and Masson staining showed an artery-like structure of the SDAVF-DV. Immunostaining showed that vWF+ cells were not continuous in the SDAVF-DV. Although α-SMA+ and AT1+ cells were more abundant in the STV than in the SDAVF-DV, piezo-1 expression was lower in the SDAVF-DV. The SDAVF-DV showed different distributions of elastin, COL I, and COL III. COL IV and COL VI were decreased in the SDAVF-DV, while CD45+ cells and COX-1 were increased compared with those in the controls. No differences in CD68 expression and COX-2 staining were observed between the SDAVF-DV and controls. Compared with the STA, 95 proteins were upregulated and 303 proteins were downregulated in the SDAVF-DV. The most differential GO terms in each category were the adenylate cyclase-modulating G protein-coupled receptor signaling pathway, U6 snRNP, and SH3 domain binding. The most differentially expressed KEGG protein pathway was focal adhesion. Compared with the STV, the SDAVF-DV had 158 upregulated proteins and 362 downregulated proteins. The most differential GO terms in each category were lamellipodium assembly, U6 snRNP, and SH3 domain binding; and the most differentially expressed KEGG protein pathway was dilated cardiomyopathy. PPI analysis revealed PPIs among the top 300 proteins. Conclusions: The SDAVF-DV exhibits specific pathology and protein expression changes under sustained high vascular pressure. The results of the present study provide insights into the pathogenesis of SDAVF formation at the protein level as well as a scientific foundation for further exploration of the pathophysiological mechanism of the SDAVF.

16.
Adv Sci (Weinh) ; 8(23): e2102686, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34713618

RESUMO

Benzophenones are widely supplemented in personal care products, but little is known about its neurodevelopmental toxicity. The previous epidemiological study discovered a negative correlation between maternal exposure to a benzophenone metabolite 4-hydroxybenzophenone (4HBP) and child's neurodevelopment, yet the causal relationship and detailed mechanism remain to be defined. Here, it is reported that prenatal, but not postnatal, exposure to environmentally relevant level of 4HBP impairs hippocampus development and causes cognitive dysfunction in offspring mice. Transcriptomic analyses reveal that 4HBP induces the endoplasmic reticulum stress-induced apoptotic signaling and inflammatory response in hippocampal neural stem cells. Mechanistically, 4HBP exposure activates protein kinase R-like ER kinase (PERK) signaling, which induces CHOP, inhibits IκB translation, and transactivates p65, thereby promoting inflammation and apoptosis on multiple levels. Importantly, genetic or pharmacological inhibition of PERK pathway significantly attenuates 4HBP-induced NFκB signaling and neurodevelopmental abnormalities in mice and in a human brain organoid model. The study uncovers the neurodevelopmental toxicity of BP and cautions its exposure during pregnancy.

17.
J Transl Med ; 19(1): 223, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039371

RESUMO

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is a model for inflammatory demyelinating diseases of the central nervous system (CNS), a group of autoimmune diseases characterized by inflammatory infiltration, demyelination, and axonal damage. miR-20a is dysregulated in patients with CNS inflammatory demyelinating diseases; however, the function of miR-20a remains unclear. In this study, we intended to explore the role of miR-20a in EAE. METHODS: The expression of miR-20a was detected by quantitative real-time PCR (qRT-PCR) in EAE mice and patients with MOG antibody-associated demyelinating diseases. CD4+ T cells of EAE mice were sorted, stimulated, and polarized with miR-20a knockdown. Activation and differentiation of CD4+ T cells were analyzed by flow cytometry. The expression of target gene Map3k9 was detected by qRT-PCR and western blot experiments. The binding of miR-20a to the 3' UTR of Map3k9 was tested by luciferase assays. The feasibility of miR-20a as a therapeutic target to alleviate the severity of EAE was explored by intravenous administration of miR-20a antagomirs to EAE mice. RESULTS: miR-20a was upregulated in splenocytes and lymph node cells, CD4+ T cells, and spinal cords of EAE mice. Moreover, miR-20a knockdown did not influence the activation of antigen-specific CD4+ T cells but promoted their differentiation into Treg cells. Map3k9 was predicted to be a target gene of miR-20a. The expressions of Map3k9 and miR-20a were negatively correlated, and miR-20a knockdown increased the expression of Map3k9. In addition, miR-20a binded to the 3' UTR of Map3k9, and simultaneous knockdown of miR-20a and Map3k9 counteracted the enhanced differentiation of Tregs observed when miR-20a was knocked down alone. Furthermore, injection of miR-20a antagomirs to EAE mice reduced the severity of the disease and increased the proportion of Treg cells in peripheral immune organs. CONCLUSIONS: miR-20a suppresses the differentiation of antigen-specific CD4+ T cells into Tregs in EAE by decreasing the expression of Map3k9. miR-20a antagomirs alleviate EAE, suggesting a new therapy for EAE and CNS inflammatory demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/genética , Humanos , MAP Quinase Quinase Quinases , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Linfócitos T Reguladores
18.
J Nanobiotechnology ; 19(1): 123, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926468

RESUMO

BACKGROUND: An endovascular covered-stent has unique advantages in treating complex intracranial aneurysms; however, in-stent stenosis and late thrombosis have become the main factors affecting the efficacy of covered-stent treatment. Smooth-muscle-cell phenotypic modulation plays an important role in late in-stent stenosis and thrombosis. Here, we determined the efficacy of using covered stents loaded with drugs to inhibit smooth-muscle-cell phenotypic modulation and potentially lower the incidence of long-term complications. METHODS: Nanofiber-covered stents were prepared using coaxial electrospinning, with the core solution prepared with 15% heparin and 20 µM rosuvastatin solution (400: 100 µL), and the shell solution prepared with 120 mg/mL hexafluoroisopropanol. We established a rabbit carotid-artery aneurysm model, which was treated with covered stents. Angiography and histology were performed to evaluate the therapeutic efficacy and incidence rate of in-stent stenosis and thrombosis. Phenotype, function, and inflammatory factors of smooth-muscle cells were studied to explore the mechanism of rosuvastatin action in smooth-muscle cells. RESULT: Heparin-rosuvastatin-loaded nanofiber scaffold mats inhibited the proliferation of synthetic smooth-muscle cells, and the nanofiber-covered stent effectively treated aneurysms in the absence of notable in-stent stenosis. Additionally, in vitro experiments showed that rosuvastatin inhibited the smooth-muscle-cell phenotypic modulation of platelet-derived growth factor-BB induction and decreased synthetic smooth-muscle-cell viability, as well as secretion of inflammatory cytokines. CONCLUSION: Rosuvastatin inhibited the abnormal proliferation of synthetic smooth-muscle cells, and heparin-rosuvastatin-loaded covered stents reduced the incidence of stenosis and late thrombosis, thereby improving the healing rates of stents used for aneurysm treatment.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Constrição Patológica/tratamento farmacológico , Heparina/farmacologia , Músculos/efeitos dos fármacos , Nanofibras/química , Poliésteres/química , Rosuvastatina Cálcica/farmacologia , Trombose/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Aneurisma Intracraniano/terapia , Masculino , Camundongos , Poliésteres/farmacologia , Coelhos , Stents , Trombose/patologia
19.
Stroke Vasc Neurol ; 6(4): 561-571, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33785536

RESUMO

BACKGROUND: Healthy plasma therapy reverses cognitive deficits and promotes neuroplasticity in ageing brain disease. However, whether healthy plasma therapy improve blood-brain barrier integrity after stroke remains unknown. METHODS: Here, we intravenously injected healthy female mouse plasma into adult female ischaemic stroke C57BL/6 mouse induced by 90 min transient middle cerebral artery occlusion for eight consecutive days. Infarct volume, brain atrophy and neurobehavioural tests were examined to assess the outcomes of plasma treatment. Cell apoptosis, blood-brain barrier integrity and fibroblast growth factor 21 knockout mice were used to explore the underlying mechanism. RESULTS: Plasma injection improved neurobehavioural recovery and decreased infarct volume, brain oedema and atrophy after stroke. Immunostaining showed that the number of transferase dUTP nick end labelling+/NeuN+ cells decreased in the plasma-injected group. Meanwhile, plasma injection reduced ZO-1, occluding and claudin-5 tight junction gap formation and IgG extravasation at 3 days after ischaemic stroke. Western blot results showed that the FGF21 expression increased in the plasma-injected mice. However, using FGF21 knockout mouse plasma injecting to the ischaemic wild-type mice diminished the neuroprotective effects. CONCLUSIONS: Our study demonstrated that healthy adult plasma treatment protected the structural and functional integrity of blood-brain barrier, reduced neuronal apoptosis and improved functional recovery via FGF21, opening a new avenue for ischaemic stroke therapy.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Fatores de Crescimento de Fibroblastos , Acidente Vascular Cerebral , Animais , Feminino , Infarto da Artéria Cerebral Média , Camundongos , Camundongos Endogâmicos C57BL
20.
Theranostics ; 11(3): 1232-1248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391532

RESUMO

Rationale: Glial scars present a major obstacle for neuronal regeneration after stroke. Thus, approaches to promote their degradation and inhibit their formation are beneficial for stroke recovery. The interaction of microglia and astrocytes is known to be involved in glial scar formation after stroke; however, how microglia affect glial scar formation remains unclear. Methods: Mice were treated daily with M2 microglial small extracellular vesicles through tail intravenous injections from day 1 to day 7 after middle cerebral artery occlusion. Glial scar, infarct volume, neurological score were detected after ischemia. microRNA and related protein were examined in peri-infarct areas of the brain following ischemia. Results: M2 microglial small extracellular vesicles reduced glial scar formation and promoted recovery after stroke and were enriched in miR-124. Furthermore, M2 microglial small extracellular vesicle treatment decreased the expression of the astrocyte proliferation gene signal transducer and activator of transcription 3, one of the targets of miR-124, and glial fibrillary acidic protein and inhibited astrocyte proliferation both in vitro and in vivo. It also decreased Notch 1 expression and increased Sox2 expression in astrocytes, which suggested that astrocytes had transformed into neuronal progenitor cells. Finally, miR-124 knockdown in M2 microglial small extracellular vesicles blocked their effects on glial scars and stroke recovery. Conclusions: Our results showed, for the first time, that microglia regulate glial scar formation via small extracellular vesicles, indicating that M2 microglial small extracellular vesicles could represent a new therapeutic approach for stroke.


Assuntos
Isquemia Encefálica/metabolismo , Vesículas Extracelulares/metabolismo , Gliose/metabolismo , AVC Isquêmico/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA