Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineered ; 13(1): 634-644, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898373

RESUMO

We attempted to analyze the clinical value of microRNA (miR)-590-3p in diabetic nephropathy (DN) patients and its role in high glucose (HG)-induced renal tubular epithelial cell (HK-2) injury. Serum levels of miR-590-3p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Spearman correlation coefficient analysis of the correlation between miR-590-3p and clinical indicators. The diagnostic value of miR-590-3p was analyzed by the receiver operating characteristic (ROC) curve. Then, the DN cell model induced by HG in HK-2 cells was established. Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and CCK-8 assay were employed to assess cell inflammation, oxidative stress, apoptosis, and proliferation. Dual-luciferase reporter assay confirmed the target of miR-590-3p. Serum miR-590-3p was reduced in patients of DN, which was positively correlated with eGFR and negatively associated with albuminuria. Furthermore, miR-590-3p also can diagnose patients of DN from healthy subjects or patients of T2DM. Furthermore, miR-590-3p was decreased in a concentration- and time-dependent manner during HG-induction. miR-590-3p overexpression bated HG-induced inhibition effect on cell proliferation and promotion effects on apoptosis, oxidative stress, and inflammation. C-X3-C motif chemokine ligand1 (CX3CL1) is the target of miR-590-3p, whose levels were enhanced in DN patients and are negatively regulated by miR-590-3p. Our discoveries offered new insights that reduced miR-590-3p as a potential biomarker for the diagnosis of DN, and elevated miR-590-3p can alleviate renal tubular injury by HG-induced through targeting CX3XL1, which may be a novel target for improving the development of DN.


Assuntos
Quimiocina CX3CL1/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Túbulos Renais/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Diabetol Metab Syndr ; 13(1): 72, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174955

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. METHODS: RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS: Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. CONCLUSION: All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.

3.
Horm Metab Res ; 53(8): 562-569, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34126643

RESUMO

This study was designed to evaluate the diagnostic value of miR-483-5p in diabetic nephropathy (DN), and its effect and mechanism on apoptosis and inflammation of human proximal renal tubular cells (HK2) induced by high glucose (HG). Thirty healthy controls, 30 types 2 diabetes mellitus (T2DM) patients, and 28 DN patients were enrolled. miR-483-5p mRNA levels in serum were analyzed by RT-qPCR assays. The receiver operating characteristic curve (ROC) was used to analyze the diagnostic value of miR-483-5p in DN. HK2 cells were induced by HG to establish an in vitro study model. CCK-8 and flow cytometry was used to detect cell viability, apoptosis, and reactive oxygen species (ROS) generation. Inflammation levels were measured by ELISA. Luciferase reporter assay was used to detect target genes of miR-483-5p. miR-483-5p was decreased in DN patients. The decreased level of miR-483-5p was positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with proteinuria. miR-483-5p can significantly distinguish DN patients from healthy controls and T2DM and has a high diagnostic value. miR-483-5p decreased in HK2 cells induced by HG, and overexpression of miR-483-5p reversed HG-induced decreased cell activity, increased apoptosis, ROS production, and inflammation. Histone deacetylase 4 (HDCA4) was markedly increased in DN patients and HG-induced HK2 cells. miR-483-5p directly targeted HDCA4, and increasing miR-483-5p inhibited HDCA4 increased in HG-induced HK2. In conclusion, the results indicate that reduction of miR-483-5p has a high diagnostic value in DN, and overexpression of miR-483-5p has a certain protective effect on HK2 cells induced by HG by targeting HDCA4.


Assuntos
Nefropatias Diabéticas/diagnóstico , Histona Desacetilases/genética , Túbulos Renais/patologia , MicroRNAs/fisiologia , Proteínas Repressoras/genética , Adulto , Idoso , Apoptose , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Feminino , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA