RESUMO
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Assuntos
Canabidiol , Trato Gastrointestinal , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Humanos , Animais , Trato Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacosRESUMO
BACKGROUND: The optimal duration for surgical antibiotic prophylaxis (SAP) for preventing surgical site infection (SSI) in orthopaedic surgeries remains poorly supported by high-level evidence. This study aimed to assess the association between SAP duration and the occurrence of SSI within one year postoperatively. METHODS: This prospective cohort study was based on the database from Surgical Site Infection Surveillance and Improvement Project (SISIP) of a tertiary orthopaedic university hospital from October 2014 to December 2020. The main outcome was SSI, defined according to the CDC/NHSN criteria, determined by review of index hospitalization medical records, microbiology laboratory reports, and readmission records for SSI treatment within one-year after discharge. Adjusted Generalized additive models (GAMs) were performed to assess the relationships between SAP duration and SSI, determined the cut-off point of SAP duration, and estimate the relative contribution of each included variable, across the overall cohort and the three subgroups (open fracture, closed fracture, and non-traumatic group). Multivariable logistic regression models were used to estimate the association between prolonging SAP duration based on the cut-off point and SSI. RESULTS: There were 37,046 patients (55.1% male) included, with the overall SSI incidence of 2.35% (871/37,046). In adjusted GAMs, no statistically significant relationships were observed in overall cohort and open or closed group (P>0.05), but a nonlinear relationship was exhibited non-traumatic group (P=0.03); the cut-off point were 2.4 days for overall cohort and 3.6 days (open), 2.6 days (closed), 1.1 days (non-trauma) for three subgroups. In adjusted logistic regression, prolonging SAP duration did not demonstrate a statistically significant protective effect in overall cohort (aOR=0.868; 95% CI, 0.746-1.011) and three groups (open: aOR=0.867; 95% CI, 0.668-1.124; closed: aOR=0.925; 95% CI, 0.754-1.135; non-trauma: aOR=1.184; 95% CI, 0.832-1.683). The relative contribution ranks of SAP duration were 21st overall among 34 factors, 14th for open fractures, 28th for closed fractures, and 3rd for non-traumatic group among 33 factors. CONCLUSION: Prolonged postoperative SAP duration has no protective effect against SSI in orthopaedic surgery. Our findings support current guidelines against the practice of continuing SAP postoperatively.
RESUMO
Previous research highlighted the involvement of the cannabinoid CB1 receptor in regulating the physiology of hepatocytes and hepatic stellate cells. The inhibition of the CB1 receptor via peripherally restricted CB1 receptor inverse agonist JD5037 has shown promise in inhibiting liver fibrosis in mice treated with CCl4. However, its efficacy in phospholipid transporter-deficiency-induced liver fibrosis remains uncertain. In this study, we investigated the effectiveness of JD5037 in Mdr2-/- mice. Mdr2 (Abcb4) is a mouse ortholog of the human MDR3 (ABCB4) gene encoding for the canalicular phospholipid transporter. Genetic disruption of the Mdr2 gene in mice causes a complete absence of phosphatidylcholine from bile, leading to liver injury and fibrosis. Mdr2-/- mice develop spontaneous fibrosis during growth. JD5037 was orally administered to the mice for four weeks starting at eight weeks of age. Liver fibrosis, bile acid levels, inflammation, and injury were assessed. Additionally, JD5037 was administered to three-week-old mice to evaluate its preventive effects on fibrosis development. Our findings corroborate previous observations regarding global CB1 receptor inverse agonists. Four weeks of JD5037 treatment in eight-week-old Mdr2-/- mice with established fibrosis led to reduced body weight gains. However, contrary to expectations, JD5037 significantly exacerbated liver injury, evidenced by elevated serum ALT and ALP levels and exacerbated liver histology. Notably, JD5037-treated Mdr2-/- mice exhibited significantly heightened serum bile acid levels. Furthermore, JD5037 treatment intensified liver fibrosis, increased fibrogenic gene expression, stimulated ductular reaction, and upregulated hepatic proinflammatory cytokines. Importantly, JD5037 failed to prevent liver fibrosis formation in three-week-old Mdr2-/- mice. In summary, our study reveals the exacerbating effect of JD5037 on liver fibrosis in genetically MDR2-deficient mice. These findings underscore the need for caution in the use of peripherally restricted CB1R inverse agonists for liver fibrosis treatment, particularly in cases of dysfunctional hepatic phospholipid transporter.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Cirrose Hepática , Receptor CB1 de Canabinoide , Animais , Camundongos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Masculino , Camundongos Knockout , Ácidos e Sais Biliares/metabolismo , Agonismo Inverso de Drogas , Camundongos Endogâmicos C57BLRESUMO
The domain of gamma-ray imaging necessitates technological advancements to surmount the challenge of energy-selective imaging. Conventional systems are constrained in their dynamic focus on specific energy ranges, a capability imperative for differentiating gamma-ray emissions from diverse sources. This investigation introduces an innovative imaging system predicated on the detection of recoil electrons, addressing the demand for adjustable energy selectivity. Our methodology encompasses the design of a gamma-ray imaging system that leverages recoil electron detection to execute energy-selective imaging. The system's efficacy was investigated experimentally, with emphasis on the adaptability of the energy selection window. The experimental outcomes underscore the system's adeptness at modulating the energy selection window, adeptly discriminating gamma rays across a stipulated energy spectrum. The results corroborate the system's adaptability, with an adjustable energy resolution that coincides with theoretical projections and satisfies the established criteria. This study affirms the viability and merits of utilizing recoil electrons for tunable energy-selective gamma-ray imaging. The system's conceptualization and empirical validation represent a notable progress in gamma-ray imaging technology, with prospective applications extending from medical imaging to astrophysics. This research sets a solid foundation for subsequent inquiries and advancements in this domain.
RESUMO
Cyanide is a typical toxic reducing agent prevailing in wastewater with a well-defined chemical mechanism, whereas its exploitation as an electron donor by microorganisms is currently understudied. Given that conventional denitrification requires additional electron donors, the cyanide and nitrogen can be eliminated simultaneously if the reducing HCN/CN- and its complexes are used as inorganic electron donors. Hence, this paper proposes anaerobic cyanides oxidation for nitrite reduction, whereby the biological toxicity and activity of cyanides are modulated by bimetallics. Performance tests illustrated that low toxicity equivalents of iron-copper composite cyanides provided higher denitrification loads with the release of cyanide ions and electrons from the complex structure by the bimetal. Both isotopic labeling and Density Functional Theory (DFT) demonstrated that CN--N supplied electrons for nitrite reduction. The superposition of chemical processes reduces the biotoxicity and enhances the biological activity of cyanides in the CN-/Fe3+/Cu2+/NO2- coexistence system, including complex detoxification of CN- by Fe3+, CN- release by Cu2+ from [Fe(CN)6]3-, and NO release by nitrite substitution of -CN groups. Cyanide is the smallest structural unit of C/N-containing compounds and serves as a probe to extend the electron-donating principle of anaerobic cyanides oxidation to more electron-donor microbial utilization.
Assuntos
Cobre , Cianetos , Ferro , Nitritos , Oxirredução , Cianetos/toxicidade , Cianetos/química , Nitritos/química , Nitritos/toxicidade , Cobre/química , Cobre/toxicidade , Anaerobiose , Ferro/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Águas Residuárias/química , Águas Residuárias/toxicidade , Desnitrificação/efeitos dos fármacosRESUMO
Introduction: The prevalence of Autism Spectrum Disorder (ASD) has drastically risen over the last two decades and is currently estimated to affect 1 in 36 children in the U.S., according to the center for disease control (CDC). This heterogenous neurodevelopmental disorder is characterized by impaired social interactions, communication deficits, and repetitive behaviors plus restricted interest. Autistic individuals also commonly present with a myriad of comorbidities, such as attention deficit hyperactivity disorder, anxiety, and seizures. To date, a pharmacological intervention for the treatment of core autistic symptoms has not been identified. Cannabidiol (CBD), the major nonpsychoactive constituent of Cannabis sativa, is suggested to have multiple therapeutic applications, but its effect(s) on idiopathic autism is unknown. We hypothesized that CBD will effectively attenuate the autism-like behaviors and autism-associated comorbid behaviors in BTBR T+Itpr3tf/J (BTBR) mice, an established mouse model of idiopathic ASD. Methods: Male BTBR mice were injected intraperitoneally with either vehicle, 20 mg/kg CBD or 50 mg/kg CBD daily for two weeks beginning at postnatal day 21 ± 3. On the final treatment day, a battery of behavioral assays were used to evaluate the effects of CBD on the BTBR mice, as compared to age-matched, vehicle-treated C57BL/6 J mice. Results: High dose (50 mg/kg) CBD treatment attenuated the elevated repetitive self-grooming behavior and hyperlocomotion in BTBR mice. The social deficits exhibited by the control BTBR mice were rescued by the 20 mg/kg CBD treatment. Discussion: Our data indicate that different doses for CBD are needed for treating specific ASD-like behaviors. Together, our results suggest that CBD may be an effective drug to ameliorate repetitive/restricted behaviors, social deficits, and autism-associated hyperactivity.
RESUMO
Deep-space optical communication has garnered increasing attention for its high data transfer rate, wide bandwidth, and high transmission speed. However, coronal plasma turbulence severely degrades optical signals during superior solar conjunction. In this study, we introduce the models for plasma density and generalized non-Kolmogorov turbulence power spectrum. Based on these models, we derive the variance of the phase fluctuations with the assistance of the Rytov theory in the weak turbulence regime involving various variables, such as turbulence outer scale, spectral index, relative fluctuation factor, and wavelength. Subsequently, we evaluate the bit error ratio (BER) performance of the deep-space optical communication system, considering phase fluctuations and intensity scintillations, under binary phase shift keying modulation. Numerical calculations reveal that small heliocentric distance, large relative fluctuation factor and spectral index, could induce severe phase fluctuations and high BER. Fortunately, the effects of the plasma irregularities on the BER performance can be mitigated by short optical wavelength under large outer scale.
RESUMO
Association between vestibular function and immune inflammatory response has garnered increasing interest. Immune responses can lead to anatomical or functional alterations of the vestibular system, and inflammatory reactions may impair hearing and balance. Vestibular disorders comprise a variety of conditions, such as vestibular neuritis, benign paroxysmal positional vertigo, Meniere's disease, vestibular migraine, posterior circulation ischemia, and bilateral vestibular disease. Moreover, some patients with autoimmune diseases develop vestibulocochlear symptom. This paper offers an overview of prevalent vestibular diseases and discusses associations between vestibular dysfunction and immune diseases.
Assuntos
Doença de Meniere , Neuronite Vestibular , Vestíbulo do Labirinto , Humanos , Vertigem/diagnóstico , Doença de Meniere/complicações , Doença de Meniere/diagnóstico , Neuronite Vestibular/complicações , Neuronite Vestibular/diagnóstico , AudiçãoRESUMO
Evodiamine (EVD), which has been reported to cause liver damage, is the main constituent of Evodia rutaecarpa (Juss.) Benth and may be bioactivated into reactive metabolites mediated by cytochrome P450. However, the relationships between bioactivation and EVD-induced hepatotoxicity remain unknown. In this study, comprehensive hepatotoxicity evaluation was explored, which demonstrated that EVD caused hepatotoxicity in both time- and dose-dependent manners in mice. By application of UPLC-Q/TOF-MS/MS, two GSH conjugates (GM1 and GM2) derived from reactive metabolites of EVD were identified, in microsomal incubation systems exposed to EVD with glutathione (GSH) as trapping agents. CYP3A4 was proved to be the main metabolic enzyme. Correspondingly, the N-acetyl-L-cysteine conjugate derived from the degradation of GM2 was detected in the urine of mice after exposure to EVD. For the first time, the iminoquinone intermediate was found in EVD-pretreated rat bile by the high-resolution MS platform. Pretreatment with ketoconazole protected the animals from hepatotoxicity, decreased the protein expression of cleaved caspase-1 and -3, but increased the area under the serum-concentration-time curve of EVD in blood determined by UPLC-QQQ-MS/MS. Depletion of GSH by buthionine sulfoximine exacerbated EVD-induced hepatotoxicity. These results implicated that the CYP3A4-mediated metabolic activation was responsible for the observed hepatotoxicity induced by EVD.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Camundongos , Ratos , Ativação Metabólica , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Citocromo P-450 CYP3A/metabolismo , Glutationa/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em TandemRESUMO
Total glucosides picrorhizae rhizome (TGPR) is an innovative traditional Chinese medicine, which is a candidate drug for the treatment of nonalcoholic steatohepatitis (NASH). However, there is still lack of deep research on the behaviors of TGPR in vivo. In this study, a reliable, specific, and sensitive liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been constructed for simultaneous determination of picroside I, picroside II, vanillic acid, androsin, cinnamic acid and picroside IV, the major active constituents of TGPR, in rat various biological matrices (plasma, tissue, bile, urine and feces) using diphenhydramine hydrochloride and paeoniflorin as the internal standard. All biosamples were prepared using a simple protein precipitation with acetonitrile. Chromatographic separation was achieved on a waters UHPLC® HSS T3 (100×2.1 mm, 1.8 µm) column. The mobile phase consisted of methanol: acetonitrile1(1:1, V/V) and 0.5 mM ammonium formate in water, was employed to separate six components from endogenous interferences. The components were detected with a triple quadrupole mass spectrometer using positive and negative ion multiple reaction monitoring (MRM) mode. The newly developed method was successfully applied to investigate the pharmacokinetics, tissue distribution and excretion of six components in rats. The pharmacokinetic results indicated that the six components in TGPR could be quickly absorbed and slowly eliminated and their bioavailability were less than 12.37%, which implied the poor absorption after intragastric dosing. For tissue distribution, the six components in TGPR were detected in liver and only androsin could penetrate the blood-brain barrier. Meanwhile, the excretion study demonstrated that vanillic acid was mostly excreted as prototype drugs and the remaining five components might be widely metabolized in vivo as the metabolites, the unconverted form was excreted mainly by feces route. The pharmacokinetics, tissue distribution and excretion characteristics of six bioactive components in TGPR were firstly revealed, which will provide references for further clinical application of TGPR as an anti-NASH drug.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Distribuição Tecidual , Medicamentos de Ervas Chinesas/análise , Rizoma/química , Ácido Vanílico/análise , Glucosídeos/farmacocinéticaRESUMO
Purpose: Neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), and red blood cell distribution width (RDW) are novel biomarkers to indicate the inflammatory/immune response, and demonstrated to be effective in diagnosis, severity evaluation, and prognosis in a variety of chronic or acute conditions. This study aims to examine whether NLR, PLR and EDW are independently associated with mortality in necrotizing fasciitis (NF). Methods: This study retrospectively enrolled patients diagnosed with NF and based on vitality status during hospitalization or within 30 days after discharge, survival and non-survival groups were defined. For distinctly comparing NLR, PLR, RDW and others, we enrolled the matched healthy controls of the same age and sex as the survivors of NF in a 1:1 ratio, which constituted the healthy control group. Comparisons were made between three groups. Variables tested with a P value < 0.10 were further entered into the multivariate logistic regression model to identify their independent association with mortality. Results: A total of 281 subjects were included, including 127 healthy controls, 127 survivors, and 27 nonsurvivors with NF, respectively, indicating a mortality rate of 17.5%. ROC analysis showed that the optimal cutoff value for NLR, PLR and RDW was 11.1, 196.0 and 15.5%, respectively, and was tested as significant only for the first two (P < 0.001, = 0.004). Multivariate logistic analysis showed that NLR ≥ 11.1 (OR, 2.51) and PLR ≥ 196.0 (OR, 2.09) were independently associated with an increased risk of mortality in NF patients, together with age ((OR, 1.28, for each 10-year increment), comorbid diabetes mellitus (OR, 2.69) and liver disease (OR, 1.86), and elevated creatinine level (OR, 1.21 for each 10 umol/L elevation). Conclusion: Elevated NLR and PLR are significant and independent predictors of mortality and can be considered for use when evaluating patients at risk of mortality.
RESUMO
Retinal pigment epithelial (RPE) cells contribute to several clinical conditions resulting in retinal fibrotic scars. Myofibroblast trans-differentiation of RPE cells is a critical step in the process of retinal fibrosis. In this study, we investigated the effects of N-oleoyl dopamine (OLDA), a newer endocannabinoid with a structure distinct from classic endocannabinoids, on TGF-ß2-induced myofibroblast trans-differentiation of porcine RPE cells. Using an in vitro collagen matrix contraction assay, OLDA was found to inhibit TGF-ß2 induced contraction of collagen matrices by porcine RPE cells. This effect was concentration-dependent, with significant inhibition of contraction observed at 3 µM and 10 µM. OLDA did not affect the proliferation of porcine RPE cells. Immunocytochemistry showed that at 3 µM, OLDA decreased incorporation of α-SMA in the stress fibers of TGF-ß2-treated RPE cells. In addition, western blot analysis showed that 3 µM OLDA significantly downregulated TGF-ß2-induced α-SMA protein expression. Taken together these results demonstrate that OLDA inhibits TGF-ß induced myofibroblast trans-differentiation of RPE cells. It has been established that classic endocannabinoid such as anandamide, by activating the CB1 cannabinoid receptor, promote fibrosis in multiple organ systems. In contrast, this study demonstrates that OLDA, an endocannabinoid with a chemical structure distinct from classic endocannabinoids, inhibits myofibroblast trans-differentiation, an important step in fibrosis. Unlike classic endocannabinoids, OLDA has weak affinity for the CB1 receptor. Instead, OLDA acts on non-classic cannabinoid receptors such as GPR119, GPR6, and TRPV1. Therefore, our study indicates that the newer endocannabinoid OLDA and its non-classic cannabinoid receptors could potentially be novel therapeutic targets for treating ocular diseases involving retinal fibrosis and fibrotic pathologies in other organ systems.
Assuntos
Endocanabinoides , Epitélio Pigmentado da Retina , Animais , Suínos , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Dopamina/farmacologia , Dopamina/metabolismo , Miofibroblastos/metabolismo , Colágeno/metabolismo , Fibrose , Células Epiteliais/metabolismo , Receptores de Canabinoides/metabolismo , Transdiferenciação Celular , Pigmentos da Retina/metabolismoRESUMO
Cannabidiol (CBD) is the most abundant non-psychotropic phytocannabinoid isolated from Cannabis sativa. To support preclinical studies of ocular pharmacology of CBD, a bioanalytical method was developed and validated for quantification of CBD in aqueous humor using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Aqueous humor samples were subjected to protein precipitation by acetonitrile, followed by chromatographic separation using reversed phase LC on a Raptor ARC-18 column with mobile phase A: 0.1 % (v/v) formic acid in water (B) 0.1 % formic acid in acetonitrile (B) as eluents. Detection was carried out with a triple quadrupole mass spectrometer with electrospray ionization operated in positive ion mode. Stable-isotope labeled CBD (CBD-d3) was used as internal standard. The total run time was 8 min. Quantification was accomplished within the validated concentration range of 0.5-500 ng/mL for CBD using a 5 µL sample. The lower limit of quantitation was 0.5 ng/mL. Inter- and intra-day precision is 4.737-7.620 % and 3.426-5.830 %, respectively. Inter- and intra-day accuracy ranged between 99.01 % and 100.2 % and 99.85-101.4 % respectively. The extraction recoveries were found to be 66.06 ± 5.146 %. The established method was successfully applied to investigate ocular pharmacokinetics of CBD in mice. Following intraperitoneal (i.p.) administration of 50 mg/kg CBD, its concentration reaches a Cmax of 71.55 ± 36.64 ng/mL in aqueous humor, with a Tmax of 2 h and a half-life of 1.046 h. The AUC was 183.4 ± 49.17 ng * h/mL. The development and validation of this LC-MS/MS method is an important step toward the goal of assessing the aqueous humor concentrations of CBD and correlating the concentrations of this phytocannabinoid with its ocular pharmacologic effects.
Assuntos
Canabidiol , Canabinoides , Camundongos , Animais , Cromatografia Líquida/métodos , Canabinoides/análise , Canabidiol/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humor Aquoso/metabolismo , Reprodutibilidade dos TestesRESUMO
Jitongning tablet (JTNT) is a Traditional Chinese Medicine (TCM) prescription used for the treatment of Ankylosing spondylitis (AS). Currently, it is in phase II clinical trial (NCT03932019) for patients with active axial Spondyloarthritis (axSpA), showing great promise for the treatment of AS. However, the potential material basis and the underlying mechanisms for JTNT to treat AS remain elusive. Here, we performed UPLC-Q-TOF-MS to determine the in vivo metabolic profile of JTNT in rats and conducted in vivo studies including acetic acid-induced writhing, hot plate models, and collagen-induced arthritis (CIA) in rats to evaluate and validate the analgesic and anti-inflammatory effects of JTNT, two main symptoms for AS. Additionally, network pharmacology combined with molecular docking was performed to investigate the potential underlying mechanisms. As a result, a total of 116 xenobiotics were identified from the plasma, urine, and brain tissues of rats after oral administration of JTN extracts. Pharmacological evaluation revealed that fractions JTN-3 and JTN-4 exerted significant analgesic activities by reducing the number of writhes in an acetic acid-induced writhing mice model. JTN extract also exerted excellent therapeutic effects in the CIA model by ameliorating paw edema and decreasing systemic manifestation of inflammation and the level of circulating immune complex (CIC) and interferon γ (IFN-γ). Fractions of JTN extract, especially JTN-2 and JTN-4, on the other hand, ameliorated the secondary lesions caused by chicken type II collagen (CII) to a certain extent. Further, network pharmacology combined with molecular docking suggested crucial roles of inflammation and immune-related genes such as MAPK1, MAPK14, NOS3, and RELA in the treatment of AS by JTNT. In conclusion, our studies suggest that the isoquinoline and diterpenoid alkaloids from Corydalis Rhizoma and Aconiti Radix Cocta, along with coumarins from Angelicae Pubescentis Radix, may be the main bioactive components, and the AS treatment mechanism may mainly involve immune regulation of JTNT. These results help clarify the potential material basis and underlying mechanisms of JTNT for the treatment of AS, facilitating the broad application of this TCM in clinical practice.
Assuntos
Artrite Experimental , Medicamentos de Ervas Chinesas , Espondilite Anquilosante , Camundongos , Ratos , Animais , Espondilite Anquilosante/tratamento farmacológico , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/efeitos adversos , Analgésicos/uso terapêutico , Inflamação/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Comprimidos/efeitos adversosRESUMO
Intraocular pressure (IOP) is regulated primarily through aqueous humor production by ciliary body and drainage through uveoscleral and trabecular meshwork (TM) tissues. The goal of this study was to measure the effect of non-psychotropic cannabidiol (CBD) on aqueous humor outflow through TM and assess the effect of CBD on the TM cell signaling pathways that are important for regulating outflow. Perfused porcine eye anterior segment explants were used to investigate the effects of CBD on aqueous humor outflow. Cultured porcine TM cells were used to study the effects of CBD on TM cell contractility, myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation, and RhoA activation. In the anterior segment perfusion experiments, aqueous humor outflow was increased significantly within 1 h after adding 1 µM CBD and the effect was sustained over the 5 h of measurement. Treatment of TM cells with 1 µM CBD significantly decreased TM cell-mediated collagen contraction, inhibited phosphorylation of MLC and MYPT1, and reduced RhoA activation. Our data demonstrate, for the first time, that as a potential therapeutic agent for lowering intraocular pressure, CBD can enhance aqueous humor outflow and modify TM cell signaling.
Assuntos
Canabidiol , Malha Trabecular , Animais , Humor Aquoso/metabolismo , Canabidiol/farmacologia , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/farmacologia , Transdução de Sinais , Suínos , Malha Trabecular/metabolismoRESUMO
Epithelial-mesenchymal transition (EMT) facilitates cancer invasion and is initiated by mesenchyme-driving transcription factors and actin cytoskeletal assembly. We show a cytoplasmic-to-nuclear transport gradient of the EMT transcription factor Zeb1 toward sites of invasion in lung adenocarcinoma (LUAD), driven by the EMT inducer Tgfb, which is expressed in M2 polarized macrophages. We show that Zeb1 binds free actin monomers and RhoA in the cytoplasm to inhibit actin polymerization, blocking cell migration and Yap1 nuclear transport. Tgfb causes turnover of the scaffold protein Rassf1a, which targets RhoA. Release of this RhoA inhibition in response to Tgfb overcomes Zeb1's block of cytoskeleton assembly and frees it for nuclear transport. A ZEB1 nuclear transport signature highlights EMT progression, identifies dedifferentiated invasive/metastatic human LUADs, and predicts survival. Blocking Zeb1 nuclear transport with a small molecule identified in this study inhibits cytoskeleton assembly, cell migration, Yap1 nuclear transport, EMT, and precancerous-to-malignant transition.
Assuntos
Neoplasias Pulmonares , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Actinas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismoRESUMO
The influence of the ocean depth and anisotropic tilt angle on vertical underwater wireless optical communication (UWOC) systems is considered in this study. We propose a power spectrum model of oceanic turbulence with an anisotropic tilt angle for the first time. Thereafter, the expression of the scintillation index is derived for a spherical wave propagating over anisotropic oceanic turbulence in the vertical link. In addition, considering the temperature and salinity, relevant data of the Atlantic and Pacific oceans at different depths are selected to study further the effect of ocean depth on the scintillation index. The results indicate that the scintillation index strongly depends on the ocean depth and anisotropic tilt angle. Moreover, the scintillation index is also related to other parameters, such as temperature and salinity, kinematic viscosity, the anisotropic factor, optical wavelength, and propagation distance. The presented results can be beneficial in designing optical wireless communication systems in the ocean environment.
RESUMO
Objective: Diabetic retinopathy (DR) is the retinal consequence of chronic progressive diabetic microvascular leakage and occlusion. Non-proliferating diabetic retinopathy (NPDR) is the early stage of DR. It eventually occurs to some degree in all patients with diabetes mellitus. In recent years, many clinical trials have shown that Compound Danshen Dripping Pill (CDDP) may be associated with the improvement of NPDR symptoms. The aim of this study was to quantitatively summarize the association between CDDP and the therapeutic effects of NPDR. Methods: It was conducted that a systematic literature search of PubMed, Web of Science, CNKI, VIP and Wanfang Data updated in June 2020 with the following search terms: "diabetic retinopathy" or "retinopathy" or "DR" or "NPDR", in combination with "Compound Danshen Dripping Pill" or "Salvia miltiorrhiza" or "Danshen". Risk ratio (RR) and weighted mean difference (WMD) with their 95% confidence interval (CI) was calculated between treatment and control groups. The sensitivity analyses were undertaken by removing each individual study when high heterogeneity appeared. Subgroup analysis, Meta-regression, and publication bias analysis were also conducted. The strength of evidence was evaluated with the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) method. Results: Twenty-six RCTs involving 2047 subjects were included to conduct a Meta-analysis after screening the studies, extracting the data, and assessing the study quality. The Stata15.0 software was utilized for processing. Meta-analysis indicated that curative effects of treatment group with CDDP was significantly better than control [RR = 0.54, 95% CI (0.40, 0.73); moderate-quality evidence]. In addition, the results showed that CDDP was significantly associated with improving retinal hemorrhages [WMD = -0.62, 95% CI (-0.78, -0.46); low-quality evidence], the vision [WMD = 0.14, and 95% CI (0.09, 0.19), low-quality evidence], fundus fluorescence angiography [RR = 0.37 and 95% CI (0.23, 0.60); low-quality evidence], reduction of retinal microaneurysm [WMD = -3.74 and 95% CI (-4.38, -3.11); moderate-quality evidence], hemangioma volume [WMD = -3.15, 95%CI (-3.45, -2.85); moderate-quality evidence], macular thickness [WMD = -5.52, 95%CI = (-64.27, -48.78); low-quality evidence], mean defect [WMD = -1.65 and 95% CI (-1.95, -1.34); very low-quality evidence], fasting blooding glucose [WMD = -0.95, 95% CI (-1.19, -0.70); low-quality evidence), hemoglobin A1c [WMD = -0.62, 95% CI (-0.93, -0.30); low-quality evidence], high sensitive C reaction protein [WMD = -5.66, 95% CI (-8.01, -3.31); low-quality evidence]. Sensitivity, subgroup, and Meta-regression analyses were also assessed. Conclusion: The study demonstrated that CDDP has beneficial clinical effects for treating NPDR and improve the vision. Moreover, it indicated that oral CDDP in NPDR patients led to significant regulation of serum level of fasting blooding glucose, hemoglobin A1c and high sensitive C reaction protein, which was associated with the pathogenesis of NPDR. However, high-quality and large randomized clinical trials will be needed to prove the consequence in future.
RESUMO
Objective: The aim of this study is to analyze the construction of a training program for specialized nurses in disinfection supply center (CSSD) based on post competency. Methods: Based on the theory of post competency, literature analysis, investigation, and expert consultation are used to establish training contents and methods. Results: Two rounds of expert consultation were conducted in this study. In the first round of expert consultation, 22 questionnaires were sent out and 21 valid questionnaires were received with an effective recovery of 95.45%. Seven experts (31.82%) proposed 53 suggestions for modification. A total of 21 questionnaires were sent out in the second round of expert consultation and 21 were effectively received with an effective recovery rate of 100.00%. In the first round of expert consultation, the mean importance score of 63 third-level indicators was 4.00-5.00 points, the standard deviation was 0.00-1.00, and the full score rate was 46.54%-100.00%. In the second round of expert consultation, the mean importance score of 67 third-level indicators was 4.05â¼5.00 points, the standard deviation was 0.00-0.88, and the full score rate was 20.00%â¼100.00%. In the first round of expert consultation, the Kendall coordination coefficient was 0.187. In the second round of expert consultation, the Kendall coordination coefficient was 0.2196, and the differences were statistically significant after χ 2 test (P < 0.05). The coefficient of variation of each index in the second round of expert consultation ranged from 0.00 to 0.21. Conclusion: The CSSD-specialized nurse training program based on job competency constructed in this study takes job competency as the theoretical basis and uses a literature analysis method, survey research method, and expert consultation method to establish the content and method of training, the above methods are scientific and reasonable, and experts are motivated. It is highly authoritative, and the consultation opinions of experts at all levels of indicators tend to be consistent, which can provide reference for the training of CSSD specialized nurses.
Assuntos
Técnica Delphi , Humanos , Inquéritos e QuestionáriosRESUMO
The influence of oceanic turbulence and pointing error impairments on the underwater wireless optical communication (UWOC) systems is considered in this study. We propose a generalized fading model, which comprises the path loss due to the absorption and scattering, the oceanic turbulence (modeled by Málaga distribution), and the pointing error impairments resulting from ocean movements. Thereafter, closed-form expressions of the average symbol error probability (SEP) and average channel capacity are proposed for optical waves propagate in oceanic turbulence with the M-ary pulse position modulation (PPM) and under the constraints of the limited average-power and peak-power. The Monte Carlo simulations are conducted to validate the analytical results and demonstrate that the fading parameters, including the mean-squared temperature, the salinity-temperature contribution factor, jitters, and water conditions, significantly affect the system performance. Moreover, the thermal noise and quantum noise in ocean environment have more serious impact than the background noise. Finally, we prove that the UWOC systems with the pure peak-power constraint performs better than that limited by average-power and peak-power.