Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Integr Plant Biol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041924

RESUMO

Light is one of the most essential environmental factors that tightly and precisely control various physiological and developmental processes in plants. B-box CONTAINING PROTEINs (BBXs) play central roles in the regulation of light-dependent development. In this study, we report that BBX9 is a positive regulator of light signaling. BBX9 interacts with the red light photoreceptor PHYTOCHROME B (phyB) and transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs). phyB promotes the stabilization of BBX9 in light, while BBX9 inhibits the transcriptional activation activity of PIFs. In turn, PIFs directly bind to the promoter of BBX9 to repress its transcription. On the other hand, BBX9 associates with the positive regulator of light signaling, BBX21, and enhances its biochemical activity. BBX21 associates with the promoter regions of BBX9 and transcriptionally up-regulates its expression. Collectively, this study unveiled that BBX9 forms a negative feedback loop with PIFs and a positive one with BBX21 to ensure that plants adapt to fluctuating light conditions.

2.
J Plant Physiol ; 299: 154265, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754343

RESUMO

B-box containing proteins (BBXs) are a class of zinc-ligating transcription factors or regulators that play essential roles in various physiological and developmental processes in plants. They not only directly associate with target genes to regulate their transcription, but also interact with other transcription factors to mediate target genes' expression, thus forming a complex transcriptional network ensuring plants' adaptation to dynamically changing light environments. This review summarizes and highlights the molecular and biochemical properties of BBXs, as well as recent advances with a focus on their critical regulatory functions in photomorphogenesis (de-etiolation), shade avoidance, photoperiodic-mediated flowering, and secondary metabolite biosynthesis and accumulation in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Desenvolvimento Vegetal , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desenvolvimento Vegetal/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas/metabolismo , Plantas/genética , Plantas/efeitos da radiação , Fotoperíodo
3.
Plant Commun ; 5(2): 100730, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37817409

RESUMO

Isoflavonoids, secondary metabolites derived from the phenylalanine pathway, are predominantly biosynthesized in legumes, especially soybean (Glycine max). They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health. In this study, we report that light signaling controls isoflavonoid biosynthesis in soybean. Blue-light photoreceptors (GmCRY1s, GmCRY2s, GmPHOT1s, and GmPHOT2s) and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation, whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis. GmPHOT1s and GmPHOT2s stabilize GmSTF1/2, whereas GmCOP1b promotes the degradation of these two proteins in soybean. GmSTF1/2 regulate the expression of approximately 27.9% of the genes involved in soybean isoflavonoid biosynthesis, including GmPAL2.1, GmPAL2.3, and GmUGT2. They also repress the expression of GmBBX4, a negative regulator of isoflavonoid biosynthesis in soybean. In addition, GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis. Thus, GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis. Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.


Assuntos
Isoflavonas , Humanos , Isoflavonas/genética , Isoflavonas/metabolismo , Glycine max/genética , Retroalimentação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Integr Plant Biol ; 64(9): 1706-1723, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35848532

RESUMO

Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and PHYTOCHROME INTERACTING FACTORs (PIFs) are negative regulators, and ELONGATED HYPOCOTYL5 (HY5) is a positive regulator of seedling photomorphogenic development. Here, we report that SICKLE (SIC), a proline rich protein, acts as a novel negative regulator of photomorphogenesis. HY5 directly binds the SIC promoter and activates SIC expression in response to light. In turn, SIC physically interacts with HY5 and interferes with its transcriptional regulation of downstream target genes. Moreover, SIC interacts with PIF4 and promotes PIF4-activated transcription of itself. Interestingly, SIC is targeted by COP1 for 26S proteasome-mediated degradation in the dark. Collectively, our data demonstrate that light-induced SIC functions as a brake to prevent exaggerated light response via mediating HY5 and PIF4 signaling, and its degradation by COP1 in the dark avoid too strong inhibition on photomorphogenesis at the beginning of light exposure.


Assuntos
Anemia Falciforme , Proteínas de Arabidopsis , Arabidopsis , Anemia Falciforme/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plântula , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
aBIOTECH ; 2(2): 117-130, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36304757

RESUMO

phytochrome B (phyB) acts as the red light photoreceptor and negatively regulates the growth-promoting factor PHYTOCHROME INTERACTING 4 (PIF4) through a direct physical interaction, which in turn changes the expression of a large number of genes. phyB-PIF4 module regulates a variety of biological and developmental processes in plants. In this study, we demonstrate that B-BOX PROTEIN 11 (BBX11) physically interacts with both phyB and PIF4. BBX11 negatively regulates PIF4 accumulation as well as its biochemical activity, consequently leading to the repression of PIF4-controlled genes' expression and promotion of photomorphogenesis in the prolonged red light. This study reveals a regulatory mechanism that mediates red light signal transduction and sheds a light on phyB-PIF4 module in promoting red light-dependent photomorphognenesis. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00037-2.

6.
Plant J ; 104(2): 377-390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654323

RESUMO

Light is one of the key environmental cues controlling photomorphogenic development in plants. A group of B-box (BBX) proteins play critical roles in this developmental process through diverse regulatory mechanisms. In this study we report that BBX29 acts as a negative regulator of light signaling. BBX29 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and undergoes COP1-mediated degradation in the dark. Mutant seedlings with loss of BBX29 function show shortened hypocotyls, while transgenic plants overexpressing BBX29 display elongated hypocotyls in the light. Both BBX28 and BBX29 interfere with the binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of BBX30 and BBX31, consequently leading to the upregulation of their transcript levels. BBX30 and BBX31 associate with the promoter regions of BBX28 and BBX29, which in turn promotes the expression of these genes. Taken together, this study reveals a transcriptional feedback loop consisting of BBX28, BBX29, BBX30, BBX31, and HY5 that serves to fine-tune photomorphogenesis in response to light in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Retroalimentação Fisiológica/fisiologia , Hipocótilo/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
J Integr Plant Biol ; 62(9): 1293-1309, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32237198

RESUMO

Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development. This review summarizes and highlights the recent findings concerning the critical regulatory functions of BBXs in photoperiodic flowering, light signal transduction and light-induced pigment accumulation and their molecular modes of action at the transcriptional and post-translational levels in plants.


Assuntos
Luz , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/genética , Fatores de Transcrição/genética
8.
Front Plant Sci ; 8: 2114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29422907

RESUMO

miR408 is highly conserved among different plant species and targets transcripts encoding copper-binding proteins. The function of miR408 in reproductive development remains largely unclear despite it being known to play important roles during vegetative development in Arabidopsis. Here, we show that transgenic Arabidopsis plants overexpressing MIR408 have altered morphology including significantly increased leaf area, petiole length, plant height, flower size, and silique length, resulting in enhanced biomass and seed yield. The increase in plant size was primarily due to cell expansion rather than cell proliferation, and was consistent with higher levels of myosin gene expression and gibberellic acid (GA) measured in transgenic plants. In addition, photosynthetic rate was significantly increased in the MIR408-overexpressing plants, as manifested by higher levels of chloroplastic copper content and plastocyanin (PC) expression. In contrast, overexpression of miR408-regulated targets, Plantacyanin and Laccase 13, resulted in reduced biomass production and seed yield. RNA-sequencing revealed that genes involved in primary metabolism and stress response were preferentially enriched in the genes upregulated in MIR408-overexpressing plants. These results indicate that miR408 plays an important role in regulating biomass and seed yield and that MIR408 may be a potential candidate gene involved in the domestication of agricultural crops.

9.
Mol Plant ; 9(10): 1395-1405, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27450422

RESUMO

Extensive studies in various plants show that the anthocyanin biosynthetic process is affected by environmental factors and regulated by many transcription factors through sophisticated regulatory networks. However, it remains largely unclear about the roles of microRNA in this process. Here, we demonstrate that miR858a is a positive regulator of anthocyanin biosynthesis in Arabidopsis seedlings. Overexpression of miR858a enhances the accumulation of anthocyanins, whereas the reduced miR858a activity results in low levels of anthocyanins in STTM858 transgenic plants. We found that miR858a inhibits the expression of MYBL2, a key negative regulator of anthocyanin biosynthesis, by translational repression. In addition, ELONGATED HYPOCOTYL 5 (HY5) was shown to directly bind the MYBL2 promoter and represses its expression via specific histone modifications. Interestingly, we found that miR858a exhibits light-responsive expression in an HY5-dependent manner. Together, these results delineate the HY5-MIR858a-MYBL2 loop as a cellular mechanism for modulating anthocyanin biosynthesis, suggesting that integration of transcriptional and posttranscriptional regulation is critical for governing proper anthocyanin accumulation in response to light and other environmental factors.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA