Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Methods ; 16(33): 5684-5691, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39129414

RESUMO

H. pluvialis contains rich oleic acid and astaxanthin, which have important applications in the fields of biodiesel and biomedicine. Detection of live H. pluvialis is the prerequisite to obtaining oleic acid and astaxanthin. For this purpose, we successfully developed a reliable microfluidic impedance cytometry for the identification of live H. pluvialis. Firstly, we established a simulation model for detecting H. pluvialis based on their morphology and studied the effect of medium conductivity on the impedance of H. pluvialis at different frequencies. From the simulations, we determined that the optimal solution conductivity for the detection of H. pluvialis was 1500 µS cm-1 and studied the frequency responses of the impedance of H. pluvialis. Secondly, we fabricated the microchannels and stainless-steel detection electrodes and assembled them into microfluidic impedance cytometry. The frequency dependence of live and dead H. pluvialis was explored under different frequencies, and live and dead H. pluvialis were distinguished at a frequency of 1 MHz. The impedance of live H. pluvialis at the frequency of 1 MHz ranges from 33.73 to 52.23 Ω, while that of dead ones ranges from 13.05 to 19.59 Ω. Based on these findings, we accomplished the identification and counting of live H. pluvialis in the live and dead sample solutions. Furthermore, we accomplished the identification and counting of live H. pluvialis in the mixed samples containing Euglena and H. pluvialis. This approach possesses the promising capacity to serve as a robust tool in the identification of target microalgae, addressing a challenge in the fields of biodiesel and biomedicine.


Assuntos
Impedância Elétrica , Dispositivos Lab-On-A-Chip , Citometria de Fluxo/métodos , Xantofilas/análise , Xantofilas/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
2.
Lab Chip ; 24(9): 2506-2517, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619815

RESUMO

Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.


Assuntos
Eletrodos , Eletroforese , Eletroforese/instrumentação , Chlamydomonas reinhardtii
3.
Lab Chip ; 24(7): 2058-2068, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38436397

RESUMO

Marine microalgae play an increasingly significant role in addressing the issues of environmental monitoring and disease treatment, making the analysis of marine microalgae at the single-cell level an essential technique. For this, we put forward accurate and fast microfluidic impedance cytometry to analyze microalgal cells by assembling two cylindrical electrodes and microchannels to form a three-dimensional detection zone. Firstly, we established a mathematical model of microalgal cell detection based on Maxwell's mixture theory and numerically investigated the effects of the electrode gap, microalgal positions, and ion concentrations of the solution on detection to optimize detection conditions. Secondly, 80 µm stainless steel wires were used to construct flat-ended cylindrical electrodes and were then inserted into two collinear channels fabricated using standard photolithography techniques to form a spatially uniform electric field to promote the detection throughput and sensitivity. Thirdly, based on the validation of this method, we measured the impedance of living Euglena and Haematococcus pluvialis to study parametric influences, including ion concentration, cell density and electrode gap. The throughput of this method was also investigated, which reached 1800 cells per s in the detection of Haematococcus pluvialis. Fourthly, we analyzed live and dead Euglena to prove the ability of this method to detect the physiological status of cells and obtained impedances of 124.3 Ω and 31.0 Ω with proportions of 15.9% and 84.1%, respectively. Finally, this method was engineered for the analysis of marine microalgae, measuring living Euglena with an impedance of 159.61 Ω accounting for 3.9%, dead Euglena with an impedance of 36.43 Ω accounting for 10.1% and Oocystis sp. with an impedance of 55.00 Ω accounting for about 81.0%. This method could provide a reliable tool to analyze marine microalgae for monitoring the marine environment and treatment of diseases owing to its outstanding advantages of low cost, high throughput and high corrosion resistance.


Assuntos
Clorofíceas , Microalgas , Microfluídica , Impedância Elétrica , Eletrodos
4.
Int. j. morphol ; 39(6): 1635-1645, dic. 2021.
Artigo em Inglês | LILACS | ID: biblio-1385530

RESUMO

SUMMARY: Marein is the main active substance of Coreopsis tinctoria nutt. It not only has anti-oxidation and anti-tumor effects, but also can lower blood lipid, prevent high blood glucose, improve insulin resistance, inhibit gluconeogenesis and promote glycogen synthesis. However, the exact mechanism of its action is still unclear. Here, we explored the effect and mechanism of Marein on insulin resistance. The mice were divided into db/m, db/db, metformin+db/db, and marein+db/db groups. The body weight and kidney weight were recorded. Serum biochemical and renal function tests were measured after 8 weeks of continuous administration. Kidney tissues were subjected to HE staining, PAS staining, and Masson staining. The effect of marein on PI3K/Akt signal and autophagy pathway was detected by Western blot. After 8 weeks of Marein intervention, the body weight and kidney weight of mice did not change significantly, but the fasting blood glucose and blood lipid levels were significantly reduced than db/db group. Marein significantly improved the insulin resistance index, increased serum adiponectin and improved glucose and lipid metabolism disorders of db/db mice. Moreover, marein improved the basement membrane thickness of glomeruli and tubules, improved glomerular sclerosis and tubular fibrosis, as well as renal insufficiency, thereby protecting kidney function and delaying the pathological damage. Furthermore, marein increased the expression of PI3K and the phosphorylation of Akt/Akt (Ser473), and promoted the expression of LC3II/I, Beclin1 and ATG5. Additionally, it promoted the expression of FGFR1 in the kidney of db/db mice, and promoted the increase of serum FGF21 and FGF23. Marein has a protective effect on the kidneys of diabetic mice. It protects diabetic nephropathy by regulating the IRS1/PI3K/Akt signaling pathway to improve insulin resistance. Therefore, marein may be an insulin sensitizer.


RESUMEN: Marein es la principal sustancia activa de Coreopsis tinctoria nutt. No solo tiene efectos antioxidantes y antitumorales, sino que también puede reducir los lípidos en sangre, prevenir la glucemia alta, mejorar la resistencia a la insulina, inhibir la gluconeogénesis y promover la síntesis de glucógeno. Sin embargo, el mecanismo exacto de su acción aún no está claro. Se analizó el efecto y el mecanismo de Marein sobre la resistencia a la insulina. Los ratones se dividieron en grupos db / m, db / db, metformina + db / db y mareína + db / db. Se registró el peso corporal y el peso de los riñones. Se midieron las pruebas de función renal y bioquímica sérica después de 8 semanas de administración continua. Los tejidos renales se sometieron a tinción HE, tinción PAS y tinción Masson. El efecto de la mareína sobre la señal de PI3K / Akt y la vía de autofagia se detectó mediante Western blot. Al término de 8 semanas de tratamiento con mareína, el peso corporal y el peso de los riñones de los ratones no cambiaron significativamente, pero los niveles de glucosa en sangre y lípidos en sangre en ayunas se redujeron significativamente en relación a los del grupo db / db. Marein mejoró significativamente el índice de resistencia a la insulina, aumentó la adiponectina sérica y mejoró los trastornos del metabolismo de la glucosa y los lípidos de los ratones db / db. Además, la mareína mejoró el grosor de la membrana basal de los glomérulos y túbulos, mejoró la esclerosis glomerular y la fibrosis tubular, así como la insuficiencia renal, protegiendo la función renal y retrasando el daño patológico. Además, la mareína aumentó la expresión de PI3K y la fosforilación de Akt / Akt (Ser473), y promovió la expresión de LC3II / I, Beclin1 y ATG5. Además, promovió la expresión de FGFR1 en el riñón de ratones db / db y el aumento de FGF21 y FGF23 en suero. Marein tiene un efecto protector sobre los riñones de ratones diabéticos. Protege la nefropatía diabética regulando la vía de señalización IRS1 / PI3K / Akt para mejorar la resistencia a la insulina. Por tanto, la mareína puede ser un sensibilizador a la insulina.


Assuntos
Animais , Camundongos , Resistência à Insulina , Chalconas/administração & dosagem , Nefropatias Diabéticas , Autofagia/efeitos dos fármacos , Glicemia , Peso Corporal/efeitos dos fármacos , Imuno-Histoquímica , Western Blotting , Lipídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA