Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Brain Imaging Behav ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316311

RESUMO

Gait disorders are common in patients with subcortical ischemic vascular disease (SIVD). We aim to explore the impact of white matter (WM) damage on gait disorders in SIVD. 21 SIVD patients and 20 normal controls (NC) were included in the study. Montreal Cognitive Assessment (MoCA) was used to evaluate general cognition, while Speed-Accuracy Trade-Off (SAT) was used to assess executive function. Gait velocity, cadence, and stride length were measured. Diffusion Tensor Imaging (DTI) data were analyzed using Tract-Based Spatial Statistics (TBSS) and Peak Width of Skeletonized Mean Diffusivity (PSMD). The relationships among WM damage, gait disorders, and cognitive function were examined through mediation analysis. SIVD scored lower than NC in MoCA and SAT tests (P < 0.001). Gait velocity and stride length were decreased in SIVD. SIVD had lower PSMD (P < 0.001). PSMD correlated with gait parameters, which were totally mediated by MoCA and partially mediated by SAT. The fractional anisotropy (FA) and mean diffusivity (MD) of the genu of the corpus callosum (GCC) and body of CC (BCC) were correlated with gait parameters. The FA of the bilateral anterior corona radiata (ACR) was positively correlated with gait parameters, while the MD of the bilateral superior corona radiata (SCR), bilateral superior longitudinal fasciculus (SLF), and left external capsule (EC) were negatively correlated with them (P < 0.05). Gait impairments in SIVD were associated with cognitive deficits. Cognitive impairment mediated the WM damage and gait disorders. The microstructural alterations of CC, SLF, EC, and CR may be related to changes in gait.

2.
Angew Chem Int Ed Engl ; : e202414116, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297525

RESUMO

To prevent dendrite growth and hydrogen evolution reaction, directional epitaxial growth of Zn2+ ions on Zn anode, especially along the lowest-surface-energy Zn (0002) plane, is pursued for highly reversible zinc metal batteries (ZMBs). However, designing single Zn (0002) exposed anodes for sustained uniaxial crystalline orientation of Zn electroplating faces challenges. Herein, we propose an anode engineering that utilizes a low lattice mismatch substrate and ordered Zn2+ migration channels to modify Zn anodes with single (0002) surface exposure and sustainable Zn-oriented growth, yielding highly reversible ZMBs. A vapor-deposited metal-organic framework Cu3(C6O6)2 film on brass foil shows low lattice mismatch (4.24%) with electrodeposited Zn anodes, enabling the exposure of a single (0002) plane. Furthermore, the low desolvation energy (-1.36 eV) between solvated Zn2+ ions and the ordered porous Cu3(C6O6)2 film guides sustainable Zn-oriented nucleation along the Zn (0002) surface. Consequently, the Zn||Zn cells with brass-Cu3(C6O6)2 substrate shows a high average Coulombic efficiency of 99.55% after 4,000 cycles at 10 mA cm-2. This work provides a new window to design highly reversible Zn metal anode with a single-exposed Zn (0002) plane and sustainable oriented growth for emerging ZMBs.

3.
J Am Soc Mass Spectrom ; 35(10): 2499-2506, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39258819

RESUMO

It is extremely difficult to inject a low-energy electron beam into a conventional radiofrequency (RF) linear ion trap for electron capture dissociation (ECD) without using a magnetic field to focus the electrons. In this study, the dynamic process of electrons in an RF field during their injection and transmission through a linear ion trap was simulated to determine the range of the RF phase where the electrons can be decelerated to meet the energy requirement for ECD. The ECD time window was expanded by applying a time-dependent compensation voltage to the cathode. The relationship between the cathode voltage and the phase of the RF voltage was determined. The ECD time window was increased to 49.4% of the total RF cycle after applying a compensation voltage. Between the phases of RF voltage of 0 and 0.975 π, at least 98.7% of electrons can be injected into the ECD reaction zone, and 94% of them had an energy less than 3 eV. The range of electron energy can also easily be shifted upward to enable hot electron capture dissociation.

4.
Small ; : e2405940, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180267

RESUMO

Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.

5.
Technol Cancer Res Treat ; 23: 15330338241274289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149935

RESUMO

Introduction: In recent years, the development of drug-eluting embolization beads that can be imaged has become a hot research topic in regard to meeting clinical needs. In our previous study, we successfully developed nano-assembled microspheres (NAMs) for multimodal imaging purposes. NAMs can not only be visualized under CT/MR/Raman imaging but can also load clinically required doses of doxorubicin. It is important to systematically compare the pharmacokinetics of NAMs with those of commercially available DC Beads and CalliSpheres to evaluate the clinical application potential of NAMs. Methods: In our study, we compared NAMs with two types of drug-eluting beads (DEBs) in terms of irinotecan, drug-loading capacity, release profiles, microsphere diameter variation, and morphological characteristics. Results: Our results indicate that NAMs had an irinotecan loading capacity similar to those of DC Beads and CalliSpheres but exhibited better sustained release in vitro. Conclusion: NAMs have great potential for application in transcatheter arterial chemoembolization for the treatment of colorectal cancer liver metastases.


Assuntos
Irinotecano , Microesferas , Imagem Multimodal , Irinotecano/administração & dosagem , Irinotecano/farmacologia , Humanos , Imagem Multimodal/métodos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Quimioembolização Terapêutica/métodos , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Camptotecina/análogos & derivados , Camptotecina/administração & dosagem , Camptotecina/farmacologia
6.
Neuroradiology ; 66(10): 1681-1691, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38985319

RESUMO

PURPOSE: To develop thrombus radiomics models based on dual-energy CT (DECT) for predicting etiologic cause of stroke. METHODS: We retrospectively enrolled patients with occlusion of the middle cerebral artery who underwent computed tomography (NCCT) and DECT angiography (DECTA). 70 keV virtual monoenergetic images (simulate conventional 120kVp CTA images) and iodine overlay maps (IOM) were reconstructed for analysis. Five logistic regression radiomics models for predicting cardioembolism (CE) were built based on the features extracted from NCCT, CTA and IOM images. From these, the best one was selected to integrate with clinical information for further construction of the combined model. The performance of the different models was evaluated and compared using ROC curve analysis, clinical decision curves (DCA), calibration curves and Delong test. RESULTS: Among all the radiomic models, model NCCT+IOM performed the best, with AUC = 0.95 significantly higher than model NCCT, model CTA, model IOM and model NCCT+CTA in the training set (AUC = 0.88, 0.78, 0.90,0.87, respectively, P < 0.05), and AUC = 0.92 in the testing set, significantly higher than model CTA (AUC = 0.71, P < 0.05). Smoking and NIHSS score were independent predictors of CE (P < 0.05). The combined model performed similarly to the model NCCT+IOM, with no statistically significant difference in AUC either in the training or test sets. (0.96 vs. 0.95; 0.94 vs. 0.92, both P > 0.05). CONCLUSION: Radiomics models constructed based on NCCT and IOM images can effectively determine the source of thrombus in stroke without relying on clinical information.


Assuntos
Angiografia por Tomografia Computadorizada , Infarto da Artéria Cerebral Média , Humanos , Masculino , Feminino , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Angiografia por Tomografia Computadorizada/métodos , Idoso , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Angiografia Cerebral/métodos , Trombose/diagnóstico por imagem , Trombose/complicações , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Meios de Contraste , Radiômica
7.
J Colloid Interface Sci ; 675: 1091-1099, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39032375

RESUMO

Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs' oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs' robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg-1 and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g-1. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn2+ and CF3SO3- as well as chemical redox of Zn2+ with carbonyl/pyridine motifs forming O-Zn-N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.

8.
Abdom Radiol (NY) ; 49(7): 2387-2400, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39030402

RESUMO

OBJECTIVE: We developed and validated a clinical-radiomics model for preoperative prediction of the short-term efficacy of initial drug-eluting beads transarterial chemoembolization (D-TACE) treatment in patients with hepatocellular carcinoma (HCC). METHODS: In this retrospective cohort study of 113 patients with intermediate and advanced HCC, 5343 features were extracted based on three sequences of the arterial phase (AP), diffusion-weighted imaging, and T2-weighted images based on contrast-enhanced magnetic resonance imaging, and minimum redundancy maximum correlation and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection and model construction. Multifactor logistic regression was used to build a clinical-imaging model based on clinical factors and a clinical-radiomics model. The area under the curve (AUC) and calibration curves were used to assess model performance, and the clinical value of the model was analyzed using decision curve analysis. The relationship between the actual and predicted short-term efficacy of the combined model and progression-free survival (PFS) was evaluated using Kaplan-Meier survival curves and log-rank tests. RESULTS: A total of 34 radiomics features were selected by LASSO, and the clinical-radiomics model had the best predictive performance (AUC = 0.902 and AUC = 0.845 for the training and testing sets, respectively), and the model based on AP had the best predictive performance among the four radiomics models (AUC = 0.89 for the training set and AUC = 0.85 for the testing set); the multifactorial logistic regression results showed that microsphere type (p = 0.042) and AP Rad-score (p = 0.01) were associated with short-term efficacy. In addition, a difference in PFS was observed in patients with HCC with different short-term efficacies predicted by the combined model. Moreover, prognosis was better in the objective versus non-objective response group. CONCLUSIONS: The combined clinical-radiomics model is an effective predictor of the short-term efficacy of initial D-TACE in patients with HCC, contributing to clinical and economic benefits for patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Meios de Contraste , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Quimioembolização Terapêutica/métodos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Idoso , Resultado do Tratamento , Valor Preditivo dos Testes , Adulto , Estudos de Coortes , Radiômica
9.
Angew Chem Int Ed Engl ; : e202410200, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008407

RESUMO

The direct construction of metal-free catalysts on conductive substrates for electrocatalytic organic hydrogenation reactions is significant but still unexplored. Here, learning from the homogeneous molecular catalysts, an organic molecular mimetic metal-free heterogeneous catalyst is designed and constructed in situ on a graphite flake electrode via a mild electrochemical oxidation‒reduction relay strategy. The as-prepared -COOH- and -OH-functionalized metal-free catalyst exhibits an electrocatalytic alkyne semihydrogenation performance with a 72% Faradaic efficiency, 99% selectivity and 96% yield of the alkene product, which is comparable to that of noble metal catalysts. The removal of these oxygen-containing groups leads to negligible activity. The experimental and calculation results reveal that the origin of the high activity can be assigned to the -COOH and -OH groups on graphite. A flow electrolytic cell delivers ten grams of hydrogenated products with 81% Faradaic efficiency. This metal-free catalyst is also suitable for gas-phase acetylene semihydrogenation and other electrocatalytic hydrogenation reactions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38843053

RESUMO

In this paper, we study the problem of 3D object segmentation from raw point clouds. Unlike existing methods which usually require a large amount of human annotations for full supervision, we propose the first unsupervised method, called OGC, to simultaneously identify multiple 3D objects in a single forward pass, without needing any type of human annotations. The key to our approach is to fully leverage the dynamic motion patterns over sequential point clouds as supervision signals to automatically discover rigid objects. Our method consists of three major components, 1) the object segmentation network to directly estimate multi-object masks from a single point cloud frame,2)the auxiliary self-supervised scene flow estimator,and 3)our core object geometry consistency component. By carefully designing a series of loss functions, we effectively take into account the multi-object rigid consistency and the object shape invariance in both temporal and spatial scales. This allows our method to truly discover the object geometry even in the absence of annotations. We extensively evaluate our method on five datasets, demonstrating the superior performance for object part instance segmentation and general object segmentation in both indoor and the challenging outdoor scenarios. Our code and data are available at https://github.com/vLAR-group/OGC.

11.
ChemSusChem ; : e202400886, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899510

RESUMO

Recently, aqueous Zn-X (X=S, Se, Te, I2, Br2) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I2, Br2) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.

12.
Small ; 20(32): e2400774, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616778

RESUMO

Capacitive carbon cathodes deliver great potential for zinc-ion hybrid capacitors (ZHCs) due to their resource abundance and structural versatility. However, the dimension mismatch between the micropores of carbons and hydrated Zn2+ ions often results in unsatisfactory charge storage capability. Here well-arranged heterodiatomic carbon superstructures are reported with compatible pore dimensions for activating Zn2+ ions, initiated by the supramolecular self-assembly of 1,3,5-triazine-2,4,6-triamine and cyanuric acid via in-plane hydrogen-bonds and out-of-plane π-π interactions. Flower-shaped carbon superstructures expose more surface-active motifs, continuous charge-transport routes, and more importantly, well-developed pores. The primary subnanopores of 0.82 nm are size-exclusively accessible for solvated Zn2+ ions (0.86 nm) to maximize spatial charge storage, while rich mesopores (1-3 nm) allow for high-kinetics ion migration with a low activation energy. Such favorable superstructure cathodes contribute to all-round performance improvement for ZHCs, including high energy density (158 Wh kg-1), fast-charging ability (50 A g-1), and excellent cyclic lifespan (100 000 cycles). An anion-cation hybrid charge storage mechanism is elucidated for superstructure cathode, which entails alternate physical uptake of Zn2+/CF3SO3 - at electroactive pores and bipedal chemical binding of Zn2+ to electronegative carbonyl/pyridine motifs. This work expands the design landscape of carbon superstructures for advanced energy storage.

13.
Adv Sci (Weinh) ; 11(19): e2310319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477446

RESUMO

Zinc-organic batteries (ZOBs) are receiving widespread attention as up-and-coming energy-storage systems due to their sustainability, operational safety and low cost. Charge carrier is one of the critical factors affecting the redox kinetics and electrochemical performances of ZOBs. Compared with conventional large-sized and sluggish Zn2+ storage, non-metallic charge carriers with small hydrated size and light weight show accelerated interfacial dehydration and fast reaction kinetics, enabling superior electrochemical metrics for ZOBs. Thus, it is valuable and ongoing works to build better ZOBs with non-metallic ion storage. In this review, versatile non-metallic cationic (H+, NH4 +) and anionic (Cl-, OH-, CF3SO3 -, SO4 2-) charge carriers of ZOBs are first categorized with a brief comparison of their respective physicochemical properties and chemical interactions with redox-active organic materials. Furthermore, this work highlights the implementation effectiveness of non-metallic ions in ZOBs, giving insights into the impact of ion types on the metrics (capacity, rate capability, operation voltage, and cycle life) of organic cathodes. Finally, the challenges and perspectives of non-metal-ion-based ZOBs are outlined to guild the future development of next-generation energy communities.

14.
Chem Sci ; 15(12): 4322-4330, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516081

RESUMO

Dendrite growth and parasitic reactions of a Zn metal anode in aqueous media hinder the development of up-and-coming Zn-ion batteries. Optimizing the crystal growth after Zn nucleation is promising to enable stable cyclic performance of the anode, but directly regulating specific crystal plane growth for homogenized Zn electrodeposition remains highly challenging. Herein, a perfluoropolymer (Nafion) is introduced into an aqueous electrolyte to activate a thermodynamically ultrastable Zn/electrolyte interface for long-term Zn-ion batteries. The low adsorption energy (-2.09 eV) of Nafion molecules on Zn metal ensures the in situ formation of a Nafion-nanofilm during the first charge process. This ultrathin artificial solid electrolyte interface with zincophilic -SO3- groups guides the directional Zn2+ electrodeposition along the (002) crystal surface even at high current density, yielding a dendrite-free Zn anode. The synergic Zn/electrolyte interphase electrochemistry contributes an average coulombic efficiency of 99.71% after 4500 cycles for Zn‖Cu cells, and Zn‖Zn cells achieve an ultralong lifespan of over 7000 h at 5 mA cm-2. Besides, Zn‖MnO2 cells operate well over 3000 cycles. Even at -40 °C, Zn‖Zn cells achieve stable Zn2+ plating/stripping for 1200 h.

15.
Front Aging Neurosci ; 16: 1304265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476660

RESUMO

Background: Disorders associated with cognitive impairment impose a significant burden on both families and society. Previous studies have indicated that gait characteristics under dual-task as reliable markers of early cognitive impairment. Therefore, digital gait detection has great potential for future cognitive screening. However, research on digital biomarkers based on smart devices to identify cognitive impairment remains limited. The aim of this study is to explore digital gait biomarkers by utilizing intelligent wearable devices for discriminating mild cognitive impairment and dementia. Methods: This study included 122 subjects (age: 74.7 ± 7.7 years) diagnosed with normal cognition (NC, n = 38), mild cognitive impairment (MCI, n = 42), or dementia (n = 42). All subjects underwent comprehensive neuropsychological assessments and cranial Magnetic Resonance Imaging (MRI). Gait parameters were collected using validated wearable devices in both single-task and dual-task (DT). We analyzed the ability of gait variables to predict MCI and dementia, and examined the correlations between specific DT-gait parameters and sub-cognitive functions as well as hippocampal atrophy. Results: Our results demonstrated that dual-task could significantly improve the ability to predict cognitive impairment based on gait parameters such as gait speed (GS) and stride length (SL). Additionally, we discovered that turn velocity (TV and DT-TV) can be a valuable novel digital marker for predicting MCI and dementia, for identifying MCI (DT-TV: AUC = 0.801, sensitivity 0.738, specificity 0.842), and dementia (DT-TV: AUC = 0.923, sensitivity 0.857, specificity 0.842). The correlation analysis and linear regression analysis revealed a robust association between DT-TV and memory function, as well as the hippocampus atrophy. Conclusion: This study presents a novel finding that DT-TV could accurately identify varying degrees of cognitive impairment. DT-TV is strongly correlated with memory function and hippocampus shrinkage, suggests that it can accurately reflect changes in cognitive function. Therefore, DT-TV could serve as a novel and effective digital biomarker for discriminating cognitive impairment.

16.
Front Neurol ; 15: 1297076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318441

RESUMO

Background: The old adults have high incidence of cognitive impairment, especially in patients with cerebral small vessel disease (CSVD). Cognitive impairment is not easy to be detected in such populations. We aimed to develop clinical prediction models for different degrees of cognitive impairments in elderly CSVD patients based on conventional imaging and clinical data to determine the better indicators for assessing cognitive function in the CSVD elderly. Methods: 210 CSVD patients were screened out by the evaluation of Magnetic Resonance Imaging (MRI). Then, participants were divided into the following three groups according to the cognitive assessment results: control, mild cognitive impairment (MCI), and dementia groups. Clinical data were collected from all patients, including demographic data, biochemical indicators, carotid ultrasound, transcranial Doppler (TCD) indicators, and linear measurement parameters based on MRI. Results: Our results showed that the brain atrophy and vascular lesions developed progressive worsening with increased degree of cognitive impairment. Crouse score and Interuncal distance/Bitemporal distance (IUD/BTD) were independent risk factors for MCI in CSVD patients, and independent risk factors for dementia in CSVD were Crouse Score, the pulsatility index of the middle cerebral artery (MCAPI), IUD/BTD, and Sylvian fissure ratio (SFR). Overall, the parameters with high performance were the IUD/BTD (OR 2.28; 95% CI 1.26-4.10) and SFR (OR 3.28; 95% CI 1.54-6.91), and the AUC (area under the curve) in distinguishing between CSVD older adults with MCI and with dementia was 0.675 and 0.724, respectively. Linear brain measurement parameters had larger observed effect than other indexes to identify cognitive impairments in CSVD patients. Conclusion: This study shows that IUD/BTD and SFR are good predictors of cognitive impairments in CSVD elderly. Linear brain measurement showed a good predictive power for identifying MCI and dementia in elderly subjects with CSVD. Linear brain measurement could be a more suitable and novel method for screening cognitive impairment in aged CSVD patients in primary healthcare facilities, and worth further promotion among the rural population.

17.
Angew Chem Int Ed Engl ; 63(16): e202401049, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372434

RESUMO

Bipolar organics fuse the merits of n/p-type redox reactions for better Zn-organic batteries (ZOBs), but face the capacity plafond due to low density of active units and single-electron reactions. Here we report multielectron redox-bipolar tetranitroporphyrin (TNP) with quadruple two-electron-accepting n-type nitro motifs and dual-electron-donating p-type amine moieties towards high-capacity-voltage ZOBs. TNP cathode initiates high-kinetics, hybrid anion-cation 10e- charge storage involving four nitro sites coordinating with Zn2+ ions at low potential and two amine species coupling with SO4 2- ions at high potential. Consequently, Zn||TNP battery harvests high capacity (338 mAh g-1), boosted average voltage (1.08 V), and outstanding energy density (365 Wh kg-1 TNP). Moreover, the extended π-conjugated TNP macrocycle achieves anti-dissolution in electrolytes, prolonging the battery life to 50,000 cycles at 10 A g-1 with 71.6 % capacity retention. This work expands the chemical landscape of multielectron redox-bipolar organics for state-of-the-art ZOBs.

18.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203159

RESUMO

Most navigation aids for visually impaired individuals require users to pay close attention and actively understand the instructions or feedback of guidance, which impose considerable cognitive loads in long-term usage. To tackle the issue, this study proposes a cognitive burden-free electronic travel aid for individuals with visual impairments. Utilizing human instinctive compliance in response to external force, we introduce the "Aerial Guide Dog", a helium balloon aerostat drone designed for indoor guidance, which leverages gentle tugs in real time for directional guidance, ensuring a seamless and intuitive guiding experience. The introduced Aerial Guide Dog has been evaluated in terms of directional guidance and path following in the pilot study, focusing on assessing its accuracy in orientation and the overall performance in navigation. Preliminary results show that the Aerial Guide Dog, utilizing Ultra-Wideband (UWB) spatial positioning and Measurement Unit (IMU) angle sensors, consistently maintained minimal deviation from the targeting direction and designated path, while imposing negligible cognitive burdens on users while completing the guidance tasks.


Assuntos
Aeronaves , Animais de Trabalho , Animais , Cães , Humanos , Projetos Piloto , Eletrônica , Cognição
19.
Angew Chem Int Ed Engl ; 63(3): e202316835, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38010854

RESUMO

Compared with Zn2+ storage, non-metallic charge carrier with small hydrated size and light weight shows fast dehydration and diffusion kinetics for Zn-organic batteries. Here we first report NH4 + /H+ co-storage in self-assembled organic superstructures (OSs) by intermolecular interactions of p-benzoquinone (BQ) and 2, 6-diaminoanthraquinone (DQ) polymer through H-bonding and π-π stacking. BQ-DQ OSs exhibit exposed quadruple-active carbonyl motifs and super electron delocalization routes, which are redox-exclusively coupled with high-kinetics NH4 + /H+ but exclude sluggish and rigid Zn2+ ions. A unique 4e- NH4 + /H+ co-coordination mechanism is unravelled, giving BQ-DQ cathode high capacity (299 mAh g-1 at 1 A g-1 ), large-current tolerance (100 A g-1 ) and ultralong life (50,000 cycles). This strategy further boosts the capacity to 358 mAh g-1 by modulating redox-active building units, giving new insights into ultra-fast and stable NH4 + /H+ storage in organic materials for better Zn batteries.

20.
J Magn Reson Imaging ; 59(1): 211-222, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078514

RESUMO

BACKGROUND: How brain neural activity changes at multiple time points throughout the day and the neural mechanisms underlying time-dependent modulation of vigilance are less clear. PURPOSE: To explore the effect of circadian rhythms and homeostasis on brain neural activity and the potential neural basis of time-dependent modulation of vigilance. STUDY TYPE: Prospective. SUBJECTS: A total of 30 healthy participants (22-27 years old). FIELD STRENGTH/SEQUENCE: A 3.0 T, T1-weighted imaging, echo-planar functional MRI (fMRI). ASSESSMENT: Six resting-state fMRI (rs-fMRI) scanning sessions were performed at fixed times (9:00 h, 13:00 h, 17:00 h, 21:00 h, 1:00 h, and 5:00 h) to investigate fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) diurnal variation. The fALFF/ReHo and the result of the psychomotor vigilance task were used to assess local neural activity and vigilance. STATISTICAL TESTS: One-way repeated measures analysis of variance (ANOVA) was used to assess changes in vigilance (P < 0.05) and neural activity in the whole brain (P < 0.001 at the voxel level and P < 0.01 at the cluster level, Gaussian random field [GRF] corrected). Correlation analysis was used to examine the relationship between neural activity and vigilance at all-time points of the day. RESULTS: The fALFF/ReHo in the thalamus and some perceptual cortices tended to increase from 9:00 h to 13:00 h and from 21:00 h to 5:00 h, whereas the key nodes of the default mode network (DMN) tended to decrease from 21:00 h to 5:00 h. The vigilance tended to decrease from 21:00 h to 5:00 h. The fALFF/ReHo in the thalamus and some perceptual cortices was negatively correlated with vigilance at all-time points of the day, whereas the fALFF/ReHo in the key nodes of the DMN was positively correlated with vigilance. DATA CONCLUSION: Neural activities in the thalamus and some perceptual cortices show similar trends throughout the day, whereas the key nodes of the DMN show roughly opposite trends. Notably, diurnal variation of the neural activity in these brain regions may be an adaptive or compensatory response to changes in vigilance. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Mapeamento Encefálico/métodos , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA