Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Chemosphere ; 253: 126718, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32298908

RESUMO

High-throughput screening (HTS) using new approach methods is revolutionizing toxicology. Asexual freshwater planarians are a promising invertebrate model for neurotoxicity HTS because their diverse behaviors can be used as quantitative readouts of neuronal function. Currently, three planarian species are commonly used in toxicology research: Dugesia japonica, Schmidtea mediterranea, and Girardia tigrina. However, only D. japonica has been demonstrated to be suitable for HTS. Here, we assess the two other species for HTS suitability by direct comparison with D. japonica. Through quantitative assessments of morphology and multiple behaviors, we assayed the effects of 4 common solvents (DMSO, ethanol, methanol, ethyl acetate) and a negative control (sorbitol) on neurodevelopment. Each chemical was screened blind at 5 concentrations at two time points over a twelve-day period. We obtained two main results: First, G. tigrina and S. mediterranea planarians showed significantly reduced movement compared to D. japonica under HTS conditions, due to decreased health over time and lack of movement under red lighting, respectively. This made it difficult to obtain meaningful readouts from these species. Second, we observed species differences in sensitivity to the solvents, suggesting that care must be taken when extrapolating chemical effects across planarian species. Overall, our data show that D. japonica is best suited for behavioral HTS given the limitations of the other species. Standardizing which planarian species is used in neurotoxicity screening will facilitate data comparisons across research groups and accelerate the application of this promising invertebrate system for first-tier chemical HTS, helping streamline toxicology testing.


Assuntos
Planárias/fisiologia , Testes de Toxicidade/métodos , Animais , Neurônios , Síndromes Neurotóxicas , Planárias/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-29075679

RESUMO

Parkinson's, a progressive neural disorder, is difficult to identify due to the hidden nature of the symptoms associated. We present a machine learning approach that uses a definite set of features obtained from the Parkinsons Progression Markers Initiative(PPMI) study as input and classifies them into one of two classes: PD(Parkinson's disease) and HC(Healthy Control). As far as we know this is the first work in applying machine learning algorithms for classifying patients with Parkinson's disease with the involvement of domain expert during the feature selection process. We evaluate our approach on 1194 patients acquired from Parkinsons Progression Markers Initiative and show that it achieves a state-of-the-art performance with minimal feature engineering.

4.
J Bioinform Comput Biol ; 10(1): 1240009, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22809310

RESUMO

Protein X-ray crystallography--the most popular method for determining protein structures--remains a laborious process requiring a great deal of manual crystallographer effort to interpret low-quality protein images. Automating this process is critical in creating a high-throughput protein-structure determination pipeline. Previously, our group developed ACMI, a probabilistic framework for producing protein-structure models from electron-density maps produced via X-ray crystallography. ACMI uses a Markov Random Field to model the three-dimensional (3D) location of each non-hydrogen atom in a protein. Calculating the best structure in this model is intractable, so ACMI uses approximate inference methods to estimate the optimal structure. While previous results have shown ACMI to be the state-of-the-art method on this task, its approximate inference algorithm remains computationally expensive and susceptible to errors. In this work, we develop Probabilistic Ensembles in ACMI (PEA), a framework for leveraging multiple, independent runs of approximate inference to produce estimates of protein structures. Our results show statistically significant improvements in the accuracy of inference resulting in more complete and accurate protein structures. In addition, PEA provides a general framework for advanced approximate inference methods in complex problem domains.


Assuntos
Algoritmos , Proteínas/química , Simulação por Computador , Cristalografia por Raios X , Probabilidade , Conformação Proteica
5.
Proteins ; 80(2): 649-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21953935

RESUMO

Uch37 is a de-ubiquitylating enzyme that is functionally linked with the 26S proteasome via Rpn13, and is essential for metazoan development. Here, we report the X-ray crystal structure of full-length human Uch37 at 2.95 Å resolution. Uch37's catalytic domain is similar to those of all UCH enzymes characterized to date. The C-terminal extension is elongated, predominantly helical and contains coiled coil interactions. Additionally, we provide an initial characterization of Uch37's oligomeric state and identify a systematic error in previous analyses of Uch37 activity. Taken together, these data provide a strong foundation for further analysis of Uch37's several functions.


Assuntos
Ubiquitina Tiolesterase/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Ubiquitina Tiolesterase/metabolismo
6.
Int J Data Min Bioinform ; 3(2): 205-27, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19517990

RESUMO

Several methods for automatically constructing a protein model from an electron-density map require searching for many small protein-fragment templates in the density. We propose to use the spherical-harmonic decomposition of the template and the maps density to speed this matching. Unlike other template-matching approaches, this allows us to eliminate large portions of the map unlikely to match any templates. We train several first-pass filters for this elimination task. We show our new template-matching method improves accuracy and reduces running time, compared to previous approaches. Finally, we extend our method to produce a structural-homology detection algorithm using electron density.


Assuntos
Cristalografia por Raios X/métodos , Modelos Moleculares , Proteínas/química , Software , Algoritmos , Bases de Dados de Proteínas , Probabilidade , Conformação Proteica
7.
Bioinformatics ; 23(21): 2851-8, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17933855

RESUMO

MOTIVATION: One bottleneck in high-throughput protein crystallography is interpreting an electron-density map, that is, fitting a molecular model to the 3D picture crystallography produces. Previously, we developed ACMI (Automatic Crystallographic Map Interpreter), an algorithm that uses a probabilistic model to infer an accurate protein backbone layout. Here, we use a sampling method known as particle filtering to produce a set of all-atom protein models. We use the output of ACMI to guide the particle filter's sampling, producing an accurate, physically feasible set of structures. RESULTS: We test our algorithm on 10 poor-quality experimental density maps. We show that particle filtering produces accurate all-atom models, resulting in fewer chains, lower sidechain RMS error and reduced R factor, compared to simply placing the best-matching sidechains on ACMI's trace. We show that our approach produces a more accurate model than three leading methods--Textal, Resolve and ARP/WARP--in terms of main chain completeness, sidechain identification and crystallographic R factor. AVAILABILITY: Source code and experimental density maps available at http://ftp.cs.wisc.edu/machine-learning/shavlik-group/programs/acmi/


Assuntos
Absorciometria de Fóton/métodos , Algoritmos , Cristalografia por Raios X/métodos , Modelos Químicos , Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Simulação por Computador , Filtração/métodos , Modelos Estatísticos , Tamanho da Partícula , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA