Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081262

RESUMO

We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7-4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.

2.
Phys Rev Lett ; 131(10): 101002, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739367

RESUMO

We report the first result of a direct search for a cosmic axion background (CaB)-a relativistic background of axions that is not dark matter-performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX). Conventional haloscope analyses search for a signal with a narrow bandwidth, as predicted for dark matter, whereas the CaB will be broad. We introduce a novel analysis strategy, which searches for a CaB induced daily modulation in the power measured by the haloscope. Using this, we repurpose data collected to search for dark matter to set a limit on the axion photon coupling of a CaB originating from dark matter cascade decay via a mediator in the 800-995 MHz frequency range. We find that the present sensitivity is limited by fluctuations in the cavity readout as the instrument scans across dark matter masses. Nevertheless, we suggest that these challenges can be surmounted using superconducting qubits as single photon counters, and allow ADMX to operate as a telescope searching for axions emerging from the decay of dark matter. The daily modulation analysis technique we introduce can be deployed for various broadband rf signals, such as other forms of a CaB or even high-frequency gravitational waves.

3.
Phys Rev Lett ; 127(26): 261803, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029490

RESUMO

We report the results from a haloscope search for axion dark matter in the 3.3-4.2 µeV mass range. This search excludes the axion-photon coupling predicted by one of the benchmark models of "invisible" axion dark matter, the Kim-Shifman-Vainshtein-Zakharov model. This sensitivity is achieved using a large-volume cavity, a superconducting magnet, an ultra low noise Josephson parametric amplifier, and sub-Kelvin temperatures. The validity of our detection procedure is ensured by injecting and detecting blind synthetic axion signals.

4.
Rev Sci Instrum ; 92(12): 124502, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972408

RESUMO

Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 µeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature.

5.
Phys Rev Lett ; 124(10): 101303, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216421

RESUMO

This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 µeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics.

6.
Phys Rev Lett ; 120(15): 151301, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756850

RESUMO

This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 µeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

7.
Phys Rev Lett ; 121(26): 261302, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636160

RESUMO

The µeV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX "Sidecar," which is designed to pave the way for future, higher mass, searches. This testbed experiment lives inside of and operates in tandem with the main ADMX experiment. The Sidecar experiment excludes masses in three widely spaced frequency ranges (4202-4249, 5086-5799, and 7173-7203 MHz). In addition, Sidecar demonstrates the successful use of a piezoelectric actuator for cavity tuning. Finally, this publication is the first to report data measured using both the TM_{010} and TM_{020} modes.

8.
Phys Rev Lett ; 114(23): 231302, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26196790

RESUMO

New data are reported from the operation of a 2 liter C3F8 bubble chamber in the SNOLAB underground laboratory, with a total exposure of 211.5 kg days at four different energy thresholds below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of <3.5×10(-10) and an alpha rejection factor of >98.2%. These data also include the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.


Assuntos
Fluorocarbonos/química , Modelos Teóricos , Acústica/instrumentação , Algoritmos , Nêutrons
9.
Phys Rev Lett ; 106(2): 021303, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405218

RESUMO

Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20 GeV/c2.

10.
Science ; 319(5865): 933-6, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18276885

RESUMO

Bubble chambers were the dominant technology used for particle detection in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on a new application for these devices. We operated an ultraclean, room-temperature bubble chamber containing 1.5 kilograms of superheated CF3I, a target maximally sensitive to spin-dependent and -independent weakly interacting massive particle (WIMP) couplings. An extreme intrinsic insensitivity to the backgrounds that commonly limit direct searches for dark matter was measured in this device under operating conditions leading to the detection of low-energy nuclear recoils like those expected from WIMPs. Improved limits on the spin-dependent WIMP-proton scattering cross section were extracted during our experiments, excluding this type of coupling as a possible explanation for a recent claim of particle dark-matter detection.

11.
Appl Radiat Isot ; 63(5-6): 645-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16005238

RESUMO

Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

12.
J Neural Transm (Vienna) ; 109(5-6): 721-9, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12111463

RESUMO

Despite the recent discovery of several chromosomal gene mutations in familial Parkinson's disease (PD) the genetic background for idiopathic PD remains to be elusive. Since the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) action on dopaminergic neuronal cells and the specific decrease of mitochondrial complex I activity in substantia nigra of PD patients mitochondrial biochemistry and genetics emerged to become Pandora's box in the pathogenesis of PD. One approach was to establish the potential role of defective mitochondrial DNA (mtDNA). As complex I genes are the most vulnerable part of mtDNA we analyzed the mitochondrial MTND1 and MTND2 genes of 10 substantia nigra and 85 platelet samples from PD patients. We were uneventful to detect heteroplasmic base changes even applying techniques able to visualize mutations with low percentage of heteroplasmy but here we report novel homoplasmic base changes. These results add further evidence that there are no inherited disease specific mtDNA mutations, hence individual homoplasmic mutations or very low grade heteroplasmic mutations in the vicinity of mitochondrial metabolism and oxidative stress may contribute to selective neuronal vulnerability in PD.


Assuntos
DNA Mitocondrial/genética , Mutação/genética , NADH Desidrogenase/genética , NADH NADPH Oxirredutases/genética , Doença de Parkinson/genética , Sequência de Bases/genética , Plaquetas/enzimologia , Complexo I de Transporte de Elétrons , Feminino , Humanos , Masculino , Doença de Parkinson/sangue , Doença de Parkinson/enzimologia , Valores de Referência , Substância Negra/enzimologia
13.
Phys Rev Lett ; 84(25): 5699-703, 2000 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-10991035

RESUMO

The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data, accounting for the neutron background, give limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV/c2 WIMP mass and, at >75% C.L., the entire 3sigma allowed region for the WIMP signal reported by the DAMA experiment.

14.
Biometals ; 11(3): 253-8, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9850569

RESUMO

The metal ion requirement for both enzymatic activities of the bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (E.C. 5.1.3.14/2.7.1.60), the key enzyme of N-acetylneuraminic acid biosynthesis in rat liver, was investigated. UDP-N-acetylglucosamine 2-epimerase was active in imidazole/HCl buffer in the complete absence of any metal ion. 200 mM Na+, K+, Rb+ and Cs+ activated enzyme activity up to five-fold, whereas lower concentrations of these monovalent metal ions showed only a small effect on UDP-N-acetylglucosamine 2-epimerase activity. In sodium phosphate buffer the enzyme activity was increased by 0.5 mM Mg2+, Sr2+, Ba2+ and Mn2+, while in the presence of 200 mM NaCl UDP-N-acetylglucosamine 2-epimerase activity showed a stronger activation by these divalent metal ions. In imidazole/HCl buffer, UDP-N-acetylglucosamine 2-epimerase activity was partially inhibited by 0.5 mM Be2+, Mg2+, Ba2+, Mn2+, Sn2+ and Fe2+, and completely inhibited by 0.5 mM Zn2+ and Cd2+. Divalent metal ions were essential for N-acetylmannosamine kinase activity, the most effective being Mg2+, followed by Mn2+ and Co2+. The optimal concentration of these metal ions was 3 mM. Less effective were Ni2+ and Cd2+, whereas Ca2+, Ba2+, Cu2+, Fe2+ and Zn2+ showed no effect on enzyme activity.


Assuntos
Proteínas de Escherichia coli , Fígado/enzimologia , Metais/metabolismo , Animais , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Metais/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA