Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 208: 111301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522263

RESUMO

This study examines the thermoluminescent (TL) properties of undoped Ca4YO(BO3)3 phosphor, focusing on how it behaves under a variety of experimental conditions. The IRSL-TL 565 nm was chosen as the appropriate detection filter among various optical detection filter combinations. During the preheating trials conducted at a rate of 2 °C/s, the TL peak exhibited increased intensity, particularly around 200 °C. The experimental outcomes demonstrated a reliable linear relationship (R2 = 0.996 and b = 1.015) in the dose response of undoped preheated Ca4YO(BO3)3 within the range of 1-200 Gy. The investigation encompasses a range of techniques, including the TM-Tstop method, computerized glow curve deconvolution (CGCD) analysis, and theoretical modelling. The application of the TM-Tstop method to samples irradiated with a 5 Gy dose revealed distinct zones on the TM versus Tstop diagram, signifying the presence of at least two discernible components within the TL glow curve, specifically, a single general order kinetics peak and a continuous distribution. The analysis of activation energy versus preheated temperature exhibited a stepwise curve, indicating five trap levels with depths ranging between 1.13 eV and 1.40 eV. The CGCD method also revealed the superposition of at least five distinct TL glow peaks. It was observed that their activation energies were consistent with the Tm-Tstop experiment. Furthermore, the low Figure of Merit (FOM) value of 1.18% indicates high reliability in the goodness-of-fit measure. These findings affirm the reliability and effectiveness of the employed methods in characterizing the TL properties of the Ca4YO(BO3)3 phosphor under investigation. Theoretical models, including the semi-localized transition model, were introduced to explain anomalous observations in TL glow peak intensities and heating rate patterns. While providing a conceptual framework, these models may require adjustments to accurately capture the specific characteristics uncovered through CGCD analysis. As a potential application, the study suggests that the characterized TL properties of Ca4YO(BO3)3 phosphor could be utilized in dosimetric applications, such as radiation dose measurements, owing to its reliable linear response within a broad dose range.

2.
Appl Radiat Isot ; 198: 110851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182394

RESUMO

The current study focuses on the production of GdAl3(BO3)4 (GAB) phosphors using gel combustion. X-ray diffraction (XRD) and thermoluminescent (TL) methods were used to investigate the structural and thermoluminescence (TL) features of the samples. XRD results revealed that GAB phosphors were crystallized in a rhombohedral crystal system. TL experimental data exhibited an unusual heating rate behaviour, which was explained by the semi-localized transition model, and this provides valuable insight into the properties of the GAB sample. Beta-irradiated GAB hosts exhibit two primary peaks at 106 °C and 277 °C on their TL glow curves. We have employed a variety of heating rates (VHRs), TM-Tstop method, and computerized glow curve deconvolution (CGCD) techniques. By using a combination of these techniques, we can identify the kinetic parameters of the GAB samples more accurately, including peak numbers, activation energy, and frequency factors. Both Tm-Tstop and CGCD techniques produce similar results in terms of trap numbers and trap depths. In the trap centers, electrons were trapped at 1.05 eV, 0.84 eV, 1.12 eV, 1.20 eV, 1.42 eV, 1.63 eV and 1.42 eV. There was a linear behaviour of GAB samples over a dose range of 0.1 Gy-10 Gy. GAB phosphors did not show any significant changes in TL response with repeated irradiation cycles, suggesting that it is a reliable radiation dosimeter. GAB is therefore a potential candidate for radiotherapy dose measurement based on these findings.


Assuntos
Elétrons , Calefação , Difração de Raios X , Cinética
3.
Appl Radiat Isot ; 186: 110299, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35613536

RESUMO

Ca3Y2B4O12 (CBYO) phosphor was synthesized using a gel combustion method. X-ray diffraction (XRD) measurement confirmed a single-phase structure (space group Pnma (62)) of synthesized compound. TL measurements were conducted between room temperature (RT) and 450 °C at a heating rate of 2 °Cs-1. Significant glow peaks were observed at 64, 116, and 242 °C in CYBO phosphor sample exposed to different beta doses. In the range of 0.1-100 Gy, the TL intensity of the glow peak displayed good linearity. Different methods were employed to determine the number of peaks, the trap structure, and the kinetic parameters of the thermoluminescence glow curve of CBYO; the Hoogenstraaten method, various heating rates (VHR), and glow curve deconvolution method (CGCD) implemented through tgcd:An R package. Currently available findings confirm that CYBO host is a promising candidate for environmental studies because one exhibits adequate TL dose response coupled with a good sensitivity and linearity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA