Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 215: 107915, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32461112

RESUMO

Acanthamoeba castellanii is an opportunistic protozoan responsible for serious human infections including Acanthamoeba keratitis and granulomatous amoebic encephalitis. Despite advances in antimicrobial therapy and supportive care, infections due to Acanthamoeba are a major public concern. Current methods of treatment are not fully effective against both the trophozoite and cyst forms of A. castellanii and are often associated with severe adverse effects, host cell cytotoxicity and recurrence of infection. Therefore, there is an urgent need to develop new therapeutic approaches for the treatment and management of Acanthamoebic infections. Repurposing of clinically approved drugs is a viable avenue for exploration and is particularly useful for neglected and rare diseases where there is limited interest by pharmaceutical companies. Nanotechnology-based drug delivery systems offer promising approaches in the biomedical field, particularly in diagnosis and drug delivery. Herein, we conjugated an antihyperglycemic drug, metformin with silver nanoparticles and assessed its anti-acanthamoebic properties. Characterization by ultraviolet-visible spectrophotometry and atomic force microscopy showed successful formation of metformin-coated silver nanoparticles. Amoebicidal and amoebistatic assays revealed that metformin-coated silver nanoparticles reduced the viability and inhibited the growth of A. castellanii significantly more than metformin and silver nanoparticles alone at both 5 and 10 µM after 24 h incubation. Metformin-coated silver nanoparticles also blocked encystation and inhibited the excystation in Acanthamoeba after 72 h incubation. Overall, the conjugation of metformin with silver nanoparticles was found to enhance its antiamoebic effects against A. castellanii. Furthermore, the pretreatment of A. castellanii with metformin and metformin-coated silver nanoparticles for 2 h also reduced the amoebae-mediated host cell cytotoxicity after 24 h incubation from 73% to 10% at 10 µM, indicating that the drug-conjugated silver nanoparticles confer protection to human cells. These findings suggest that metformin-coated silver nanoparticles hold promise in the improved treatment and management of Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Metformina/administração & dosagem , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Anti-Infecciosos Locais/farmacologia , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Clorexidina/farmacologia , Células HeLa , Humanos , Encefalite Infecciosa/tratamento farmacológico , Encefalite Infecciosa/parasitologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Microscopia de Força Atômica , Encistamento de Parasitas/efeitos dos fármacos , Prata , Espectrofotometria Ultravioleta , Trofozoítos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA