Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
PLoS Pathog ; 20(5): e1012020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743761

RESUMO

Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-ß. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.


Assuntos
Interferon gama , Camundongos Knockout , Orientia tsutsugamushi , Tifo por Ácaros , Transdução de Sinais , Animais , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Orientia tsutsugamushi/imunologia , Camundongos , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pele/microbiologia , Pele/patologia , Pele/imunologia , Fator de Transcrição STAT1/metabolismo
2.
Microorganisms ; 12(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38674692

RESUMO

Scrub typhus is a re-emerging disease caused by Orientia tsutsugamushi, transmitted by mites belonging to the family Trombiculidae. Humans and rodents acquire the infection by the bite of larval mites/chiggers. Suncus murinus, the Asian house shrew, has been reported to harbor the vector mites and has been naturally infected with O. tsutsugamushi. The present study aimed to localize and record O. tsutsugamushi in the tissues and the host response in shrews naturally infected with O. tsutsugamushi. Sheehan's modified May-Grunwald Giemsa staining was carried out in 365 tissues from 87 animals, and rickettsiae were documented in 87 tissues from 20 animals. Immunohistochemical (IHC) staining, using polyclonal antibodies raised against selected epitopes of the 56-kDa antigen, was carried out, and 81/87 tissue sections were tested positive for O. tsutsugamushi. By IHC, in addition to the endothelium, the pathogen was also demonstrated by IHC in cardiomyocytes, the bronchiolar epithelium, stroma of the lungs, hepatocytes, the bile duct epithelium, the epithelium and goblet cells of intestine, the tubular epithelium of the kidney, and splenic macrophages. Furthermore, the pathogen was confirmed by real-time PCR using blood (n = 20) and tissues (n = 81) of the IHC-positive animals. None of the blood samples and only 22 out of 81 IHC-positive tissues were tested positive by PCR. By nucleotide sequencing of the 56-kDa gene, Gilliam and Karp strains were found circulating among these animals. Although these bacterial strains are highly virulent and cause a wide range of pathological alterations, hence exploring their adaptive mechanisms of survival in shrews will be of significance. Given that the pathogen localizes in various organs following a transient bacteremia, we recommend the inclusion of tissues from the heart, lung, intestine, and kidney of reservoir animals, in addition to blood samples, for future molecular surveillance of scrub typhus.

3.
PLoS Negl Trop Dis ; 17(12): e0011445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091346

RESUMO

Scrub typhus is a leading cause of febrile illness in endemic countries due to infection with Orientia tsutsugamushi (Ot), a seriously understudied intracellular bacterium. Pulmonary involvement associated with vascular parasitism in patients is common and can develop into life threatening interstitial pneumonia. The diverse antigenicity of Ot genotypes and inter-strain differences in genome content are connected to varied virulence and clinical outcomes; however, detailed studies of strain-related pulmonary immune responses in human patients or small animal models of infection are lacking. In this study, we have used two clinically prevalent bacterial strains (Karp and Gilliam) to reveal cellular immune responses in inflamed lungs and potential biomarkers of disease severity. The results demonstrate that outbred CD-1 mice are highly susceptible to both Karp and Gilliam strains; however, C57BL/6 (B6) mice were susceptible to Karp, but resistant to Gilliam (with self-limiting infection), corresponding to their tissue bacterial burdens and lung pathological changes. Multicolor flow cytometric analyses of perfused B6 mouse lungs revealed robust and sustained influx and activation of innate immune cells (macrophages, neutrophils, and NK cells), followed by CD4+ and CD8+ T cells, during Karp infection, but such responses were greatly attenuated during Gilliam infection. The robust cellular responses in Karp-infected B6 mice positively correlated with significantly early and high levels of serum cytokine/chemokine protein levels (CXCL1, CCL2/3/5, and G-CSF), as well as pulmonary gene expression (Cxcl1/2, Ccl2/3/4, and Ifng). In vitro infection of B6 mouse-derived primary macrophages also revealed bacterial strain-dependent immune gene expression profiles. This study provided the lines of evidence that highlighted differential tissue cellular responses against Karp vs. Gilliam infection, offering a framework for future investigation of Ot strain-related mechanisms of disease pathogenesis vs. infection control.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Humanos , Camundongos , Animais , Orientia tsutsugamushi/genética , Camundongos Endogâmicos C57BL , Tifo por Ácaros/epidemiologia , Anticorpos , Imunidade Celular
4.
Front Immunol ; 14: 1194881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426673

RESUMO

Scrub typhus, an acute febrile illness caused by Orientia tsutsugamushi (Ot), is prevalent in endemic areas with one million new cases annually. Clinical observations suggest central nervous system (CNS) involvement in severe scrub typhus cases. Acute encephalitis syndrome (AES) associated with Ot infection is a major public health problem; however, the underlying mechanisms of neurological disorder remain poorly understood. By using a well-established murine model of severe scrub typhus and brain RNA-seq, we studied the brain transcriptome dynamics and identified the activated neuroinflammation pathways. Our data indicated a strong enrichment of several immune signaling and inflammation-related pathways at the onset of disease and prior to host death. The strongest upregulation of expression included genes involved in interferon (IFN) responses, defense response to bacteria, immunoglobulin-mediated immunity, IL-6/JAK-STAT signaling, and TNF signaling via NF-κB. We also found a significant increase in the expression of core genes related to blood-brain barrier (BBB) disruption and dysregulation in severe Ot infection. Brain tissue immunostaining and in vitro infection of microglia revealed microglial activation and proinflammatory cytokine production, suggesting a crucial role of microglia in neuroinflammation during scrub typhus. This study provides new insights into neuroinflammation in scrub typhus, highlighting the impact of excessive IFN responses, microglial activation, and BBB dysregulation on disease pathogenesis.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Animais , Camundongos , Tifo por Ácaros/genética , Doenças Neuroinflamatórias , Transcriptoma , Orientia tsutsugamushi/genética , Encéfalo/patologia
5.
Int Immunopharmacol ; 121: 110512, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343373

RESUMO

The re-emergence of Zika virus (ZIKV) remains a major public health threat that has raised worldwide attention. Accumulating evidence suggests that ZIKV can cause serious pathological changes to the human nervous system, including microcephaly in newborns. Recent studies suggest that metformin, an established treatment for diabetes may play a role in viral infection; however, little is known about the interactions between ZIKV infection and metformin administration. Using fluorescent ZIKV by flow cytometry and immunofluorescence imaging, we found that ZIKV can infect microglia in a dose-dependent manner. Metformin diminished ZIKV replication without the alteration of viral entry and phagocytosis. Our study demonstrated that metformin downregulated ZIKV-induced inflammatory response in microglia in a time- and dose-dependent manner. Our RNA-Seq and qRT-PCR analysis found that type I and III interferons (IFN), such as IFNα2, IFNß1 and IFNλ3 were upregulated in ZIKV-infected cells by metformin treatment, accompanied with the downregulation of GBP4, OAS1, MX1 and ISG15. Together, our results suggest that metformin-mediated modulation in multiple pathways may attribute to restraining ZIKV infection in microglia, which may provide a potential tool to consider for use in unique clinical circumstances.


Assuntos
Metformina , Infecção por Zika virus , Zika virus , Recém-Nascido , Humanos , Microglia , Regulação para Baixo , Replicação Viral
6.
7.
PLoS Negl Trop Dis ; 17(5): e0011090, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146079

RESUMO

Scrub typhus is a poorly studied but life-threatening disease caused by the intracellular bacterium Orientia tsutsugamushi (Ot). Cellular and humoral immunity in Ot-infected patients is not long-lasting, waning as early as one-year post-infection; however, its underlying mechanisms remain unclear. To date, no studies have examined germinal center (GC) or B cell responses in Ot-infected humans or experimental animals. This study was aimed at evaluating humoral immune responses at acute stages of severe Ot infection and possible mechanisms underlying B cell dysfunction. Following inoculation with Ot Karp, a clinically dominant strain known to cause lethal infection in C57BL/6 mice, we measured antigen-specific antibody titers, revealing IgG2c as the dominant isotype induced by infection. Splenic GC responses were evaluated by immunohistology, co-staining for B cells (B220), T cells (CD3), and GCs (GL-7). Organized GCs were evident at day 4 post-infection (D4), but they were nearly absent at D8, accompanied by scattered T cells throughout splenic tissues. Flow cytometry revealed comparable numbers of GC B cells and T follicular helper (Tfh) cells at D4 and D8, indicating that GC collapse was not due to excessive death of these cell subtypes at D8. B cell RNAseq analysis revealed significant differences in expression of genes associated with B cell adhesion and co-stimulation at D8 versus D4. The significant downregulation of S1PR2 (a GC-specific adhesion gene) was most evident at D8, correlating with disrupted GC formation. Signaling pathway analysis uncovered downregulation of 71% of B cell activation genes at D8, suggesting attenuation of B cell activation during severe infection. This is the first study showing the disruption of B/T cell microenvironment and dysregulation of B cell responses during Ot infection, which may help understand the transient immunity associated with scrub typhus.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Humanos , Camundongos , Animais , Tifo por Ácaros/microbiologia , Camundongos Endogâmicos C57BL , Linfócitos T , Centro Germinativo
8.
PLoS Negl Trop Dis ; 17(4): e0011267, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37023003

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0010459.].

9.
PLoS Negl Trop Dis ; 17(1): e0011040, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630476

RESUMO

People are infected with Leishmania donovani when the parasite is deposited in the dermis during the blood meal of the sand fly vector. Most infected people develop a subclinical latent infection, but some develop progressive visceral leishmaniasis. Malnutrition is a risk factor for the development of active VL. We previously demonstrated increased parasite dissemination from the skin to visceral organs in a murine model of malnutrition. Here we investigated the mechanism of early parasite dissemination. After delivery of L. donovani to the skin, we found enhanced capture of parasites by inflammatory monocytes and neutrophils in the skin of malnourished mice. However, parasite dissemination in malnourished mice was driven primarily by infected inflammatory monocytes, which showed increased CCR7 expression, greater intrinsic migratory capacity, and increased trafficking from skin to spleen. PGE2 production, which was increased at the site of skin infection, increased monocyte CCR7 expression and promoted CCR7-related monocyte-mediated early parasite dissemination in malnourished mice. Parasite dissemination in monocytes was reduced by inhibition of PGE2, knockdown or silencing of CCR7 in monocytes, and depletion of inflammatory monocytes through administration of diphtheria toxin to CSFR1-DTR transgenic mice that have monocyte-specific DT receptor expression. CCR7-driven trafficking of infected inflammatory monocytes through the lymph node was accompanied by increased expression of its ligands CCL19 and CCL21. These results show that the CCR7/PGE2 axis is responsible for the increased trafficking of L. donovani-infected inflammatory monocytes from the skin to the spleen in the malnourished host. Undernutrition and production of PGE2 are potential targets to reduce the risk of people developing VL. Nutritional interventions that target improved immune function and reduced PGE2 synthesis should be studied in people at risk of developing VL.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Desnutrição , Parasitos , Camundongos , Animais , Leishmaniose Visceral/parasitologia , Monócitos , Receptores CCR7 , Dinoprostona , Desnutrição/complicações
10.
PLoS Negl Trop Dis ; 16(11): e0010459, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417363

RESUMO

Orientia tsutsugamushi is an obligately intracellular bacterium with endothelial tropism and can cause mild to lethal scrub typhus in humans. No vaccine is available for this reemerging and severely neglected infection. Previous scrub typhus studies have utilized inbred mice, yet such models have intrinsic limitations. Thus, the development of suitable mouse models that better mimic human diseases is in great need for immunologic investigation and future vaccine studies. This study is aimed at establishing scrub typhus in outbred CD-1 mice and defining immune biomarkers related to disease severity. CD-1 mice received O. tsutsugamushi Karp strain via the i.v. route; major organs were harvested at 2-12 days post-infection for kinetic analyses. We found that for our given infection doses, CD-1 mice were significantly more susceptible (90-100% lethal) than were inbred C57BL/6 mice (0-10% lethal). Gross pathology of infected CD-1 mouse organs revealed features that mimicked human scrub typhus, including pulmonary edema, interstitial pneumonia, perivascular lymphocytic infiltrates, and vasculitis. Alteration in angiopoietin/receptor expression in inflamed lungs implied endothelial dysfunction. Lung immune gene profiling using NanoString analysis displayed a Th1/CD8-skewed, but Th2 repressed profile, including novel biomarkers not previously investigated in other scrub typhus models. Bio-plex analysis revealed a robust inflammatory response in CD-1 mice as evidenced by increased serum cytokine and chemokine levels, correlating with immune cell recruitment during the severe stages of the disease. This study provides an important framework indicating a value of CD-1 mice for delineating host susceptibility to O. tsutsugamushi, immune dysregulation, and disease pathogenesis. This preclinical model is particularly useful for future translational and vaccine studies for severe scrub typhus.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Humanos , Camundongos , Animais , Orientia tsutsugamushi/genética , Tifo por Ácaros/microbiologia , Transcriptoma , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
Sci Transl Med ; 14(662): eabq1945, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103514

RESUMO

Emergence of SARS-CoV-2 variants of concern (VOCs), including the highly transmissible Omicron and Delta strains, has posed constant challenges to the current COVID-19 vaccines that principally target the viral spike protein (S). Here, we report a nucleoside-modified messenger RNA (mRNA) vaccine that expresses the more conserved viral nucleoprotein (mRNA-N) and show that mRNA-N vaccination alone can induce modest control of SARS-CoV-2. Critically, combining mRNA-N with the clinically proven S-expressing mRNA vaccine (mRNA-S+N) induced robust protection against both Delta and Omicron variants. In the hamster models of SARS-CoV-2 VOC challenge, we demonstrated that, compared to mRNA-S alone, combination mRNA-S+N vaccination not only induced more robust control of the Delta and Omicron variants in the lungs but also provided enhanced protection in the upper respiratory tract. In vivo CD8+ T cell depletion suggested a potential role for CD8+ T cells in protection conferred by mRNA-S+N vaccination. Antigen-specific immune analyses indicated that N-specific immunity, as well as augmented S-specific immunity, was associated with enhanced protection elicited by the combination mRNA vaccination. Our findings suggest that combined mRNA-S+N vaccination is an effective approach for promoting broad protection against SARS-CoV-2 variants.


Assuntos
COVID-19 , Vacinas Virais , Animais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Nucleocapsídeo , RNA Mensageiro/genética , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Proteínas Virais , Vacinas de mRNA
12.
Zoonoses (Burlingt) ; 2(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35876763

RESUMO

Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity from apparently subclinical to a fatal toxic shock-like fatal disease. Models in immunocompetent mice range from an abortive infection to uniformly lethal depending on the infecting Ehrlichia species, dose of inoculum, and route of inoculation. Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. Lethal infection occurs with early overproduction of proinflammatory cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. Furthermore, fatal ehrlichiosis is associated with signaling via TLR 9/MyD88 with upregulation of several inflammasome complexes and secretion of IL-1 beta, IL-1 alpha, and IL-18 by hepatic mononuclear cells, suggesting activation of canonical and noncanonical inflammasome pathways, a deleterious role for IL-18, and the protective role for caspase 1. Autophagy promotes ehrlichial infection, and MyD88 signaling hinders ehrlichial infection by inhibiting autophagy induction and flux. Activation of caspase 11 during infection of hepatocytes by the lethal ehrlichial species after interferon alpha receptor signaling results in the production of inflammasome-dependent IL-1 beta, extracellular secretion of HMGB1, and pyroptosis. The high level of HMGB1 in lethal ehrlichiosis suggests a role in toxic shock. Studies of primary bone marrow-derived macrophages infected by highly avirulent or mildly avirulent ehrlichiae reveal divergent M1 and M2 macrophage polarization that links with generation of pathogenic CD8 T cells, neutrophils, and excessive inflammation or with strong expansion of protective Th1 and NKT cells, resolution of inflammation and clearance of infection, respectively.

13.
Front Immunol ; 13: 867924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479068

RESUMO

Infection with Orientia tsutsugamushi, an obligate intracellular bacterium, can cause mild or severe scrub typhus. Some patients develop acute lung injury, multi-organ failure, and fatal infection; however, little is known regarding key immune mediators that mediate infection control or disease pathogenesis. Using murine models of scrub typhus, we demonstrated in this study the requirement of TNF-TNFR signaling in protective immunity against this infection. Mice lacking both TNF receptors (TNFR1 and TNFR2) were highly susceptible to O. tsutsugamushi infection, displaying significantly increased tissue bacterial burdens and succumbing to infection by day 9, while most wild-type mice survived through day 20. This increased susceptibility correlated with poor activation of cellular immunity in inflamed tissues. Flow cytometry of lung- and spleen-derived cells revealed profound deficiencies in total numbers and activation status of NK cells, neutrophils, and macrophages, as well as CD4 and CD8 T cells. To define the role of individual receptors in O. tsutsugamushi infection, we used mice lacking either TNFR1 or TNFR2. While deficiency in either receptor alone was sufficient to increase host susceptibility to the infection, TNFR1 and TNFR2 played a distinct role in cellular responses. TNF signaling through TNFR1 promoted inflammatory responses and effector T cell expansion, while TNFR2 signaling was associated with anti-inflammatory action and tissue homeostasis. Moreover, TNFRs played an intrinsic role in CD8+ T cell activation, revealing an indispensable role of TNF in protective immunity against O. tsutsugamushi infection.


Assuntos
Orientia tsutsugamushi , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Tifo por Ácaros , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Tifo por Ácaros/imunologia
14.
Proteins ; 90(6): 1242-1246, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35122310

RESUMO

Hsp100 is an ATP-dependent unfoldase that promotes protein disaggregation or facilitates the unfolding of aggregation-prone polypeptides marked for degradation. Recently, new Hsp100 functions are emerging. In Plasmodium, an Hsp100 drives malaria protein export, presenting a novel drug target. Whether Hsp100 has a similar function in other protists is unknown. We present the 1.06 Å resolution crystal structure of the Hsp100 N-domain from Leishmania spp., the causative agent of leishmaniasis in humans. Our structure reveals a network of methionines and aromatic amino acids that define the putative substrate-binding site and likely evolved to protect Hsp100 from oxidative damage in host immune cells.


Assuntos
Proteínas de Choque Térmico , Leishmania , Sítios de Ligação , Proteínas de Choque Térmico/química , Humanos , Leishmania/metabolismo , Chaperonas Moleculares/química , Peptídeos/química
15.
J Immunol ; 208(4): 861-869, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35046104

RESUMO

The IL-36 family, including IL-36α, IL-36ß, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.


Assuntos
Concanavalina A/efeitos adversos , Hepatite/etiologia , Hepatite/metabolismo , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hepatite/diagnóstico , Imunofenotipagem , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina-1/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Immunology ; 165(1): 61-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411293

RESUMO

Interleukin (IL)-33, a member in the IL-1 family, plays a central role in innate and adaptive immunity; however, how IL-33 mediates cytotoxic T-cell regulation and the downstream signals remain elusive. In this study, we found increased mouse IL-33 expression in CD8+ T cells following cell activation via anti-CD3/CD28 stimulation in vitro or lymphocytic choriomeningitis virus (LCMV) infection in vivo. Our cell adoptive transfer experiment demonstrated that extracellular, but not nuclear, IL-33 contributed to the activation and proliferation of CD8+ , but not CD4+ T effector cells in LCMV infection. Importantly, IL-33 induced mTORC1 activation in CD8+ T cells as evidenced by increased phosphorylated S6 ribosomal protein (p-S6) levels both in vitro and in vivo. Meanwhile, this IL-33-induced CD8+ T-cell activation was suppressed by mTORC1 inhibitors. Furthermore, IL-33 elevated glucose uptake and lactate production in CD8+ T cells in both dose- and time-dependent manners. The results of glycolytic rate assay demonstrated the increased glycolytic capacity of IL-33-treated CD8+ T cells compared with that of control cells. Our mechanistic study further revealed the capacity of IL-33 in promoting the expression of glucose transporter 1 (Glut1) and glycolytic enzymes via mTORC1, leading to accelerated aerobic glucose metabolism Warburg effect and increased effector T-cell activation. Together, our data provide new insights into IL-33-mediated regulation of CD8+ T cells, which might be beneficial for therapeutic strategies of inflammatory and infectious diseases in the future.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glucose/metabolismo , Interleucina-33/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-33/genética , Ácido Láctico/biossíntese , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Transdução de Sinais
17.
Pathogens ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36678402

RESUMO

Orientia tsutsugamushi is an obligately intracellular bacterium and an etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (MΦ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate the role of CLRs in scrub typhus, we infected murine bone marrow-derived MΦ with O. tsutsugamushi in the presence of selective Syk inhibitors and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 h of infection. The effect of Syk inhibition on Mincle protein expression was validated via Western blot. Syk-inhibited MΦ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited MΦ, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses against O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium.

18.
Front Immunol ; 13: 1061031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618364

RESUMO

Scrub typhus is a life-threatening zoonosis caused by the obligate intracellular bacterium Orientia tsutsugamushi (Ot) that is transmitted by the infected larvae of trombiculid mites. However, the mechanism by which Ot disseminates from the bite site to visceral organs remains unclear; host innate immunity against bacterial dissemination and replication during early infection is poorly understood. In this study, by using an intradermal infection mouse model and fluorescent probe-labeled Ot, we assessed the dynamic pattern of innate immune cell responses at the inoculation site. We found that neutrophils were the first responders to Ot infection and migrated into the skin for bacterial uptake. Ot infection greatly induced neutrophil activation, and Ot-neutrophil interaction remarkably promoted cell death both in vitro and in vivo. Depletion of neutrophils did not alter bacterial dissemination in mice, as evidenced by similar bacterial burdens in the skin and draining lymph nodes (dLN) at day 3, as well as in the lungs and brains at day 14, as compared to the control mice. Instead, dendritic cells (DCs) and macrophages played a role as a Trojan horse and transmitted Ot from the skin into dLN. Importantly, the absence of homing receptor CCR7 or neutralization of its ligand, CCL21, significantly impaired DC migration, resulting in reduced bacterial burdens in dLN. Taken together, our study sheds light on a CCR7/dendritic cell-mediated mechanism of early Ot dissemination and provides new insights into therapeutic and vaccine development strategies for scrub typhus.


Assuntos
Orientia tsutsugamushi , Tifo por Ácaros , Camundongos , Animais , Receptores CCR7 , Modelos Animais de Doenças , Células Dendríticas/patologia
19.
NPJ Vaccines ; 6(1): 139, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845215

RESUMO

A candidate multigenic SARS-CoV-2 vaccine based on an MVA vector expressing both viral N and S proteins (MVA-S + N) was immunogenic, and induced T-cell responses and binding antibodies to both antigens but in the absence of detectable neutralizing antibodies. Intranasal immunization with the vaccine diminished viral loads and lung inflammation in mice after SARS-CoV-2 challenge, which correlated with the T-cell response induced by the vaccine in the lung, indicating that T-cell immunity is also likely critical for protection against SARS-CoV-2 infection in addition to neutralizing antibodies.

20.
J Biol Chem ; 297(5): 101315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678311

RESUMO

Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.


Assuntos
Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de von Willebrand/metabolismo , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA