Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136688

RESUMO

Staphylococcus aureus are commensal bacteria that are found in food, water, and a variety of settings in addition to being present on the skin and mucosae of both humans and animals. They are regarded as a significant pathogen as well, with a high morbidity that can cause a variety of illnesses. The Centers for Disease Control and Prevention (CDC) has listed them among the most virulent and resistant to antibiotics bacterial pathogens, along with Escherichia coli, Staphylococcus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterococcus faecium. Additionally, S. aureus is a part of the global threat posed by the existence of antimicrobial resistance (AMR). Using 26,430 S. aureus isolates from a global public database (NPDIB; NCBI Pathogen Detection Isolate Browser), epidemiological research was conducted. The results corroborate the evidence of notable variations in isolate distribution and ARG (Antimicrobial Resistance Gene) clusters between isolate sources and geographic origins. Furthermore, a link between the isolates from human and animal populations is suggested by the ARG cluster patterns. This result and the widespread dissemination of the pathogens among animal and human populations highlight how crucial it is to learn more about the epidemiology of these antibiotic-resistance-related infections using a One Health approach.

2.
Antibiotics (Basel) ; 12(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508321

RESUMO

Staphylococcus aureus is considered one of the most widespread bacterial pathogens for both animals and humans, being the causative agent of various diseases like food poisoning, respiratory tract infections, nosocomial bacteremia, and surgical site and cardiovascular infections in humans, as well as clinical and subclinical mastitis, dermatitis, and suppurative infections in animals. Thanks to their genetic flexibility, several virulent and drug-resistant strains have evolved mainly due to horizontal gene transfer and insurgence of point mutations. Infections caused by the colonization of such strains are particularly problematic due to frequently occurring antibiotic resistance, particulary methicillin-resistant S. aureus (MRSA), and are characterized by increased mortality, morbidity, and hospitalization rates compared to those caused by methicillin-sensitive S. aureus (MSSA). S. aureus infections in humans and animals are a prime example of a disease that may be managed by a One Health strategy. In fact, S. aureus is a significant target for control efforts due to its zoonotic potential, the frequency of its illnesses in both humans and animals, and the threat posed by S. aureus antibiotic resistance globally. The results of an epidemiological analysis on a worldwide public database (NCBI Pathogen Detection Isolate Browser; NPDIB) of 35,026 S. aureus isolates were described. We considered the diffusion of antibiotic resistance genes (ARGs), in both human and animal setting, and the results may be considered alarming. The result of this study allowed us to identify the presence of clusters with specific ARG patterns, and that these clusters are associated with different sources of isolation (e.g., human, non-human).

3.
Food Chem ; 390: 133195, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594770

RESUMO

A collection of nature-inspired lipophilic phenolic esters have been prepared by an enzymatic synthesis under flow conditions, using the immobilized lipase B from Candida antarctica (Novozyme 435®) as a catalyst in cyclopentyl methyl ether (CPME), a non-conventional and green solvent. Their antimicrobial activity against four selected bacterial strains together with their efficiency as radical scavengers were evaluated. The obtained compounds were characterized by enhanced lipophilicity in comparison with the parent non-esterified compounds, which increased the possibility of their use as additives in the food industry.


Assuntos
Anti-Infecciosos , Ésteres , Anti-Infecciosos/farmacologia , Antioxidantes , Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Fenóis
4.
J Agric Food Chem ; 70(1): 223-228, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965127

RESUMO

A series of vanillamides were easily synthesized, exploiting an acyltransferase from Mycobacterium smegmatis (MsAcT). After their evaluation as antimicrobial agents against a panel of Gram-positive and Gram-negative bacteria, three compounds were demonstrated to be 9-fold more effective toward Pseudomonas aeruginosa than the vanillic acid precursor. Taking into consideration the scarce permeability of the Gram-negative bacteria cell envelope when compared to Gram-positive strains or yeasts, these molecules can be considered the basis for the generation of new nature-inspired antimicrobials. To increase the process productivity and avoid any problem related to the poor water solubility of the starting material, a tailored flow biocatalyzed strategy in pure toluene was set up. While a robust immobilization protocol exploiting glyoxyl-agarose was employed to increase the stability of MsAcT, in-line work-up procedures were added downstream the process to enhance the system automation and reduce the overall costs.


Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA