Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6471, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833246

RESUMO

Optoelectronics is a valuable solution to scale up wireless links frequency to sub-THz in the next generation antenna systems and networks. Here, we propose a low-power consumption, small footprint building block for 6 G and 5 G new radio wireless transmission allowing broadband capacity (e.g., 10-100 Gb/s per link and beyond). We demonstrate a wireless datalink based on graphene, reaching setup limited sub-THz carrier frequency and multi-Gbit/s data rate. Our device consists of a graphene-based integrated optoelectronic mixer capable of mixing an optically generated reference oscillator approaching 100 GHz, with a baseband electrical signal. We report >96 GHz optoelectronic bandwidth and -44 dB upconversion efficiency with a footprint significantly smaller than those of state-of-the-art photonic transmitters (i.e., <0.1 mm2). These results are enabled by an integrated-photonic technology based on wafer-scale high-mobility graphene and pave the way towards the development of optoelectronics-based arrayed-antennas for millimeter-wave technology.

2.
ACS Photonics ; 10(5): 1446-1453, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215326

RESUMO

Starting from its classical domain of long distance links, optical communication is conquering new application areas down to chip-to-chip interconnections in response to the ever-increasing demand for higher bandwidth. The use of coherent modulation formats, typically employed in long-haul systems, is now debated to be extended to short links to increase the bandwidth density. Next-generation transceivers are targeting high bandwidth, high energy efficiency, compact footprint, and low cost. Integrated photonics is the only technology to reach this goal, and silicon photonics is expected to play the leading actor. However, silicon modulators have some limits, in terms of bandwidth and footprint. Graphene is an ideal material to be integrated with silicon photonics to meet the requirements of next generation transceivers. This material provides optimal properties: high mobility, fast carrier dynamics and ultrabroadband optical properties. Graphene photonics for direct detection systems based on binary modulation formats have been demonstrated so far, including electro-absorption modulators, phase modulators, and photodetectors. However, coherent modulation for increased data-rates has not yet been reported for graphene photonics yet. In this work, we present the first graphene photonics I/Q modulator based on four graphene on silicon electro-absorption modulators for advanced modulation formats and demonstrate quadrature phase shift keying (QPSK) modulation up to 40 Gb/s.

3.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984223

RESUMO

Recent advancements in quantum key distribution (QKD) protocols opened the chance to exploit nonlaser sources for their implementation. A possible solution might consist in erbium-doped light emitting diodes (LEDs), which are able to produce photons in the third communication window, with a wavelength around 1550 nm. Here, we present silicon LEDs based on the electroluminescence of Er:O complexes in Si. Such sources are fabricated with a fully-compatible CMOS process on a 220 nm-thick silicon-on-insulator (SOI) wafer, the common standard in silicon photonics. The implantation depth is tuned to match the center of the silicon layer. The erbium and oxygen co-doping ratio is tuned to optimize the electroluminescence signal. We fabricate a batch of Er:O diodes with surface areas ranging from 1 µm × 1 µm to 50 µm × 50 µm emitting 1550 nm photons at room temperature. We demonstrate emission rates around 5 × 106 photons/s for a 1 µm × 1 µm device at room temperature using superconducting nanowire detectors cooled at 0.8 K. The demonstration of Er:O diodes integrated in the 220 nm SOI platform paves the way towards the creation of integrated silicon photon sources suitable for arbitrary-statistic-tolerant QKD protocols.

4.
Nat Commun ; 12(1): 1070, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594048

RESUMO

Electro-absorption (EA) waveguide-coupled modulators are essential building blocks for on-chip optical communications. Compared to state-of-the-art silicon (Si) devices, graphene-based EA modulators promise smaller footprints, larger temperature stability, cost-effective integration and high speeds. However, combining high speed and large modulation efficiencies in a single graphene-based device has remained elusive so far. In this work, we overcome this fundamental trade-off by demonstrating the 2D-3D dielectric integration in a high-quality encapsulated graphene device. We integrated hafnium oxide (HfO2) and two-dimensional hexagonal boron nitride (hBN) within the insulating section of a double-layer (DL) graphene EA modulator. This combination of materials allows for a high-quality modulator device with high performances: a ~39 GHz bandwidth (BW) with a three-fold increase in modulation efficiency compared to previously reported high-speed modulators. This 2D-3D dielectric integration paves the way to a plethora of electronic and opto-electronic devices with enhanced performance and stability, while expanding the freedom for new device designs.

5.
ACS Nano ; 15(2): 3171-3187, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33522789

RESUMO

Graphene and related materials can lead to disruptive advances in next-generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (≥5000 cm2 V-1 s-1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapor deposition (CVD) of single layer graphene (SLG) matrices comprising up to ∼12000 individual single crystals, grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ∼80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ∼5000 cm2 V-1 s-1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ∼0.25, 0.45, 0.75, 1 dB V-1 for device lengths ∼30, 60, 90, 120 µm. The data rate is up to 20 Gbps. Encapsulation with single-layer hexagonal boron nitride (hBN) is used to protect SLG during plasma-enhanced CVD of Si3N4, ensuring reproducible device performance. The processes are compatible with full automation. This paves the way for large scale production of graphene-based photonic devices.

6.
ACS Nano ; 14(9): 11190-11204, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790351

RESUMO

We report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene/polymer/graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction. Both graphene layers are fabricated using aligned single-crystal graphene arrays grown by chemical vapor deposition. The use of PVA yields a low charge inhomogeneity ∼8 × 1010 cm-2 at the charge neutrality point, and a large Seebeck coefficient ∼140 µV K-1, enhancing the PTE effect. Our devices are the fastest GPDs operating with zero dark current, showing a flat frequency response up to 67 GHz without roll-off. This performance is achieved on a passive, low-cost, photonic platform, and does not rely on nanoscale plasmonic structures. This, combined with scalability and ease of integration, makes our GPDs a promising building block for next-generation optical communication devices.

7.
Opt Express ; 27(15): 20145-20155, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510114

RESUMO

We report on a C-band double layer graphene electro-absorption modulator on a passive SOI platform showing 29GHz 3dB-bandwith and NRZ eye-diagrams extinction ratios ranging from 1.7 dB at 10 Gb/s to 1.3 dB at 50 Gb/s. Such high modulation speed is achieved thanks to the quality of the CVD pre-patterned single crystal growth and transfer on wafer method that permitted the integration of high-quality scalable graphene and low contact resistance. By demonstrating this high-speed CVD graphene EAM modulator integrated on Si photonics and the scalable approach, we are confident that graphene can satisfy the main requirements to be a competitive technology for photonics.

8.
Nano Lett ; 19(11): 7632-7644, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31536362

RESUMO

We present a micrometer-scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed to directly generate a photovoltage by the photothermoelectric effect. It is made of chemical vapor deposited single layer graphene, and has an external responsivity ∼12.2 V/W with a 3 dB bandwidth ∼42 GHz. We utilize Au split-gates to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases the light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele- and datacom modules.

9.
Micromachines (Basel) ; 10(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151289

RESUMO

Grating couplers, widely used in Silicon Photonics (SiPho) for fibre-chip coupling are polarisation sensitive components, consequently any polarisation fluctuation from the fibre optical link results in spurious intensity swings. A polarisation management componentis analytically considered, coupled with a geometrical representation based on phasors and Poincaré sphere, generalising and simplifying the treatment and understanding of its functionalities. A specific implementation in SOI is shown both as polarisation compensator and polarisation controller, focusing on the operative principle. Finally, it is demonstrated experimentally that this component can be used as an integrated polarimeter.

10.
Appl Opt ; 56(31): 8811-8815, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091696

RESUMO

An innovative and effective architecture for lidar systems is presented and experimentally demonstrated. The proposed scheme can also be easily exploited for optical communications. In particular, the system includes an innovative lidar software-defined architecture based on optically coherent detection, overcoming current drawbacks of time of flight incoherent systems. The experiments demonstrate the ability to perform long range detection resorting to the waveform compression on the continuous wave approach, obtaining a range resolution of 15 cm with a sensitivity of -95 dBm. Beside the bulk implementation, the system has been also implemented in a photonic integrated circuit using complementary metal-oxide-semiconductor-compatible silicon on insulator technology with an extremely reduced footprint of 1.5 mm×3.5 mm. The testing of the integrated device confirms the effectiveness of this proof-of-concept realization.

11.
Opt Lett ; 41(24): 5688-5691, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973490

RESUMO

We report on an experimental prototype of a low-cost silicon photonic reconfigurable optical add/drop multiplexer (ROADM). The device is able to operate with up to 12 wavelength division multiplexing channels. In order to control the polarization of the multi-wavelength signal at the input of the device, an integrated polarization controller is investigated as an alternative to the polarization diversity device architecture. The integrated ROADM is equipped with optical switches for the selection of the path direction and variable optical attenuators for optical power control. We demonstrate the polarization insensitive routing of 10 Gb/s channels between two ROADM nodes with error-free transmission.

12.
Opt Express ; 23(15): 19261-71, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367587

RESUMO

Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.

13.
Opt Express ; 23(5): 6478-90, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836866

RESUMO

In this paper we report on an electro-refractive modulator based on single or double-layer graphene on top of silicon waveguides. The graphene layers are biased to the transparency condition in order to achieve phase modulation with negligible amplitude modulation. By means of a detailed study of both the electrical and optical properties of graphene and silicon, as well as through optimization of the geometrical parameters, we show that the proposed devices may theoretically outperform existing modulators both in terms of V(π)L and of insertion losses. The overall figures of merit of the proposed devices are as low as 8.5 and 2dB∙V for the single and double layer cases, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA