Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792589

RESUMO

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Assuntos
Melanoma , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Diferenciação Celular , Colesterol/metabolismo , Apresentação de Antígeno , Células Dendríticas/metabolismo , Microambiente Tumoral
2.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158912

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. METHODS: The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. RESULTS: GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. CONCLUSION: Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.

3.
J Exp Clin Cancer Res ; 39(1): 213, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032653

RESUMO

BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Docetaxel/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Sinvastatina/administração & dosagem , Células Tumorais Cultivadas , Ácido Valproico/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933107

RESUMO

Selenoproteins are proteins that contain selenium within selenocysteine residues. To date, twenty-five mammalian selenoproteins have been identified; however, the functions of nearly half of these selenoproteins are unknown. Although alterations in selenoprotein expression and function have been suggested to play a role in cancer development and progression, few detailed studies have been carried out in this field. Network analyses and data mining of publicly available datasets on gene expression levels in different cancers, and the correlations with patient outcome, represent important tools to study the correlation between selenoproteins and other proteins present in the human interactome, and to determine whether altered selenoprotein expression is cancer type-specific, and/or correlated with cancer patient prognosis. Therefore, in the present study, we used bioinformatics approaches to (i) build up the network of interactions between twenty-five selenoproteins and identify the most inter-correlated proteins/genes, which are named HUB nodes; and (ii) analyze the correlation between selenoprotein gene expression and patient outcome in ten solid tumors. Then, considering the need to confirm by experimental approaches the correlations suggested by the bioinformatics analyses, we decided to evaluate the gene expression levels of the twenty-five selenoproteins and six HUB nodes in androgen receptor-positive (22RV1 and LNCaP) and androgen receptor-negative (DU145 and PC3) cell lines, compared to human nontransformed, and differentiated, prostate epithelial cells (EPN) by RT-qPCR analysis. This analysis confirmed that the combined evaluation of some selenoproteins and HUB nodes could have prognostic value and may improve patient outcome predictions.


Assuntos
Neoplasias da Próstata/genética , Selenoproteínas/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/patologia , Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Prognóstico , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética
5.
Sci Rep ; 9(1): 16131, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695102

RESUMO

Selenophosphate synthetase 2 (SEPHS2) synthesizes selenide and ATP into selenophosphate, the selenium donor for selenocysteine (Sec), which is cotranslationally incorporated into selenoproteins. The action and regulatory mechanisms of SEPHS2 as well as its role in carcinogenesis (especially breast cancer) remain ambiguous and need further clarification. Therefore, lacking an experimentally determined structure for SEPHS2, we first analyzed the physicochemical properties of its sequence, modeled its three-dimensional structure and studied its conformational behavior to identify the key residues (named HUB nodes) responsible for protein stability and to clarify the molecular mechanisms by which it induced its function. Bioinformatics analysis evidenced higher amplification frequencies of SEPHS2 in breast cancer than in other cancer types. Therefore, because triple negative breast cancer (TNBC) is biologically the most aggressive breast cancer subtype and its treatment represents a challenge due to the absence of well-defined molecular targets, we evaluated SEPHS2 expression in two TNBC cell lines and patient samples. We demonstrated mRNA and protein overexpression to be correlated with aggressiveness and malignant tumor grade, suggesting that this protein could potentially be considered a prognostic marker and/or therapeutic target for TNBC.


Assuntos
Fosfotransferases/química , Fosfotransferases/genética , Selenocisteína/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Sequência de Aminoácidos , Feminino , Amplificação de Genes , Humanos , Fosfotransferases/metabolismo , Estabilidade Proteica , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
J Transl Med ; 17(1): 8, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602382

RESUMO

BACKGROUND: Intramuscular triglycerides (IMTGs) represent an important energy supply and a dynamic fat-storage depot that can expand during periods of elevated lipid availability and a fatty acid source. Ultrasonography (US) of human skeletal muscles is a practical and reproducible method to assess both IMTG presence and entity. Although a crosstalk between cytokines in skeletal muscle and adipose tissue has been suggested in obesity, condition leading to hepatic steatosis (HS) or better defined as nonalcoholic fatty liver disease and cancer, there are still questions to be answered about the role of interferons (IFNs), alpha as well as gamma, and IMTG in obesity. We aimed at discovering any correlation between IFNs and IMTG. METHODS: We analysed anthropometric data, metabolic parameters and imaging features of a population of 80 obese subjects with low-prevalence of co-morbidities but HS in relation to IFNs serum levels. A population of 38 healthy subjects (21 males) served as controls. The levels of serum IFNs were detected by a magnetic bead-based multiplex immunoassays. RESULTS: Serum concentrations of IFN-alpha 2 were increased, while serum levels of IFN-gamma were decreased confronted with those of controls; the severity of IMTG, revealed at US as Heckmatt scores, was inversely predicted by IFN-alpha 2 serum concentrations; IMTG scores were not predicted by serum levels of IFN-gamma; IMTG scores were predicted by HS severity, ascertained at US; HS severity was predicted by visceral adipose tissue, assessed by US, but the latter was not instrumental to IMTG. DISCUSSION AND CONCLUSION: This study has added some pieces of observation about the cytokine network regulating the interplay between IMTG and obesity in obese patients with HS.


Assuntos
Adiposidade , Interferon-alfa/sangue , Interferon gama/sangue , Músculo Esquelético/patologia , Hepatopatia Gordurosa não Alcoólica/sangue , Obesidade/sangue , Adulto , Fatores Etários , Teorema de Bayes , Análise Fatorial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/complicações , Probabilidade , Valores de Referência , Análise de Regressão , Triglicerídeos/metabolismo
7.
Toxins (Basel) ; 10(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373285

RESUMO

Hepatoblastoma incidence has been associated with different environmental factors even if no data are reported about a correlation between aflatoxin exposure and hepatoblastoma initiation. Considering that hepatoblastoma develops in infants and children and aflatoxin M1 (AFM1), the aflatoxin B1 (AFB1) hydroxylated metabolite, can be present in mothers' milk and in marketed milk products, in this study we decided to test the effects of AFM1 on a hepatoblastoma cell line (HepG2). Firstly, we evaluated the effects of AFM1 on the cell viability, apoptosis, cell cycle, and metabolomic and cytokinomic profile of HepG2 cells after treatment. AFM1 induced: (1) a decrease of HepG2 cell viability, reaching IC50 at 9 µM; (2) the blocking of the cell cycle in the G0/G1 phase; (3) the decrease of formiate levels and incremented level of some amino acids and metabolites in HepG2 cells after treatment; and (4) the increase of the concentration of three pro-inflammatory cytokines, IL-6, IL-8, and TNF-α, and the decrease of the anti-inflammatory interleukin, IL-4. Our results show that AFM1 inhibited the growth of HepG2 cells, inducing both a modulation of the lipidic, glycolytic, and amino acid metabolism and an increase of the inflammatory status of these cells.


Assuntos
Aflatoxina M1/toxicidade , Citocinas/metabolismo , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolômica
8.
Metabolomics ; 14(3): 33, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30830360

RESUMO

INTRODUCTION: Zearalenone (ZEN) is one of the most widely distributed toxins that contaminates many crops and foods. Its major metabolites are α-Zearalenol (α-zol) and ß-Zearalenol. Previous studies showed that ZEN and α-zol have estrogenic properties and are able to induce growth promoting effect in breast tissues. OBJECTIVIES: Considering that tumorigenesis is dependent on the reprogramming of cellular metabolism and that the evaluation of the cellular metabolome is useful to understand the metabolic changes that can occur during the cancer development and progression or after treatments, aim of our work is to study, for the first time, the effects of α-zol on the metabolomic profile of an estrogen positive breast cancer cell line, MCF-7, and of an estrogen negative breast cancer cell lines MDA-MB231. METHODS: Firstly, we tested the effects of α-zol on the cell viability after 24, 48 and 72 h of treatments with 10-10, 10-8 and 10-6 M concentrations on breast cancer MCF-7 and MDA-MB231 cell lines in comparison to human non-cancerous breast MCF10A cell line. Then, we evaluated cell cycle progression, levels of reactive oxygen species (ROS) and the metabolomic profiling by 1H-NMR approach on MCF-7 and MDA-MB231 before and after 72 h treatments. Principal component analysis was used to compare the obtained spectra. RESULTS: α-zol is resulted able to induce: (i) an increase of the cell viability on MCF-7 cells mainly after 72 h treatment, (ii) a slight decrease of the cell viability on MDA-MB231 cells, and (iii) an increase of cells in S phase of the cell cycle and of ROS only in MCF-7 cells. Moreover, the evaluation of metabolomics profile evidenced that after treatment with α-zol the levels of some metabolites increased in MCF-7 cells whereas decreased slightly in MDA-MB231 cells. CONCLUSIONS: Our results showed that α-zol was able to increase the protein biosynthesis as well as the lipid metabolism in MCF-7 cells, and, hence, to induce an estrogen positive breast cancer progression.


Assuntos
Metaboloma/efeitos dos fármacos , Zeranol/análogos & derivados , Humanos , Células MCF-7 , Espectroscopia de Prótons por Ressonância Magnética , Zeranol/farmacologia
9.
Int J Mol Sci ; 18(10)2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28991212

RESUMO

Marine sponges are an excellent source of bioactive secondary metabolites for pharmacological applications. In the present study, we evaluated the chemistry, cytotoxicity and metabolomics of an organic extract from the Mediterranean marine sponge Geodia cydonium, collected in coastal waters of the Gulf of Naples. We identified an active fraction able to block proliferation of breast cancer cell lines MCF-7, MDA-MB231, and MDA-MB468 and to induce cellular apoptosis, whereas it was inactive on normal breast cells (MCF-10A). Metabolomic studies showed that this active fraction was able to interfere with amino acid metabolism, as well as to modulate glycolysis and glycosphingolipid metabolic pathways. In addition, the evaluation of the cytokinome profile on the polar fractions of three treated breast cancer cell lines (compared to untreated cells) demonstrated that this fraction induced a slight anti-inflammatory effect. Finally, the chemical entities present in this fraction were analyzed by liquid chromatography high resolution mass spectrometry combined with molecular networking.


Assuntos
Neoplasias da Mama/metabolismo , Geodia/química , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicoesfingolipídeos/metabolismo , Humanos , Células MCF-7
10.
Mol Biosyst ; 13(6): 1246, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28524204

RESUMO

Correction for 'Metabolomic profiling and biochemical evaluation of the follicular fluid of endometriosis patients' by Marianna Santonastaso et al., Mol. BioSyst., 2017, DOI: 10.1039/c7mb00181a.

11.
Int J Oncol ; 50(2): 468-476, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28101573

RESUMO

Breast cancer is one of the most frequently diagnosed forms of cancer and different treatments are used to block its progression. However, it still represents a very common cause of death in women. Doxorubicin (Dox) is reported as an effective agent in breast cancer treatment nonetheless it induces many side­effects. For this reason, many laboratories are engaged in understanding how it is possible to decrease the drug concentration, considering that one of the possible solutions is to use drug synergy, combining it with natural substances. Recently we showed that a phenolic extract from flaxseed (FS) oil, named PEFSO, induced on MCF­7 cell line an increase of apoptosis with related modification of G0/G1 phase cell cycle, and the activation of signaling and pro­oxidant pathways. In this study we present data on the combined effect of Dox and PEFSO on two different breast cancer cell lines to define the conditions to use lower doses of this chemotherapeutic agent. We report the data relating to the ability of this mixture to induce cytotoxicity and apoptosis, cell cycle modification, mitochondrial membrane depolarization and activation of extrinsic and/or intrinsic apoptotic pathway.


Assuntos
Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Doxorrubicina/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Extratos Vegetais/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase
12.
Molecules ; 21(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775667

RESUMO

In this study, a hydroalcoholic chestnut shell extract was characterized and tested on six different human cell lines. Gallic, ellagic, and syringic acids were the most abundant non-condensed compounds in the chestnut extract, as determined by high performance liquid chromatography (HPLC). Tannins were mainly represented by condensed monomeric units of epigallocatechin and catechin/epicatechin. After 48 h of treatment, only the human hepatoblastoma HepG2 cells reached an inhibition corresponding to IC50 with an increase of apoptosis and mitochondrial depolarization. The cytokinome evaluation before and after treatment revealed that the vascular endothelial growth factor (VEGF) and the tumor necrosis factor (TNF)-α decreased after the treatment, suggesting a potential anti-angiogenic and anti-inflammatory effect of this extract. Moreover, the metabolome evaluation by ¹H-NMR evidenced that the polyphenols extracted from chestnut shell (PECS) treatment affected the levels of some amino acids and other metabolites. Overall, these data highlight the effects of biomolecules on cell proliferation, apoptosis, cell cycle and mitochondrial depolarization, and on cytokinomics and metabolomics profiles.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Citocinas/metabolismo , Fagaceae/química , Metaboloma/efeitos dos fármacos , Polifenóis/farmacologia , Antineoplásicos Fitogênicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ácido Elágico/química , Ácido Elágico/farmacologia , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Células Hep G2 , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia , Polifenóis/química , Taninos/química , Taninos/farmacologia
13.
Molecules ; 21(3): 319, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27005599

RESUMO

Many studies have evidenced that the phenolic components from flaxseed (FS) oil have potential health benefits. The effect of the phenolic extract from FS oil has been evaluated on two human breast cancer cell lines, MCF7 and MDA-MB231, and on the human non-cancerous breast cell line, MCF10A, by SRB assay, cellular death, cell cycle, cell signaling, lipid peroxidation and expression of some key genes. We have evidenced that the extract shows anti-proliferative activity on MCF7 cells by inducing cellular apoptosis, increase of the percentage of cells in G0/G1 phase and of lipid peroxidation, activation of the H2AX signaling pathway, and upregulation of a six gene signature. On the other hand, on the MDA-MB2131 cells we verified only an anti-proliferative activity, a weak lipid peroxidation, the activation of the PI3K signaling pathway and an up-regulation of four genes. Overall these data suggest that the extract has both cytotoxic and pro-oxidant effects only on MCF7 cells, and can act as a metabolic probe, inducing differences in the gene expression. For this purpose, we have performed an interactomic analysis, highlighting the existing associations. From this approach, we show that the phenotypic difference between the two cell lines can be explained through their differential response to the phenolic extract.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Óleo de Semente do Linho/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/biossíntese , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Mediators Inflamm ; 2016: 3064643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28050120

RESUMO

In recent years, many researchers are focusing their attention on the link between inflammation and cancer. The inflammation is involved in the tumor development and suppression, by stimulating the immune response. In particular, the transition from chronic inflammation to cancer produces angiogenic and growth factors able to repair the tissue and to promote cancer cell survival, implantation, and growth. In this contest, the cytokines contribute to the development of these processes becoming active before and during the inflammatory process and playing an important function at the various disease levels. Thus, these proteins can represent specific markers of tumor development and progression. Therefore the "cytokinome" term is used to indicate the evaluation of cytokine pattern by using an "omics" approach. Newly, specific protein chips of considerable and improved sensitivity are being developed to determine simultaneously several and different cytokines. This can be achieved by a multiplex technology that, through the use of small amounts of serum or other fluids, is used to determine the presence and the levels of underrepresented cytokines. Since this method is an accurate, sensitive, and reproducible cytokine assay, it is already used in many different studies. Thus, this review focuses on the more latest aspects related to cytokinome profile evaluation in different cancers.


Assuntos
Citocinas/sangue , Imunoensaio/métodos , Neoplasias/sangue , Biomarcadores/sangue , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/sangue , Metástase Neoplásica , Prognóstico
15.
PLoS One ; 9(12): e115287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531443

RESUMO

In recent years the use of natural dietary antioxidants to minimize the cytotoxicity and the damage induced in normal tissues by antitumor agents is gaining consideration. In literature, it is reported that vitamin C exhibits some degree of antineoplastic activity whereas Mitoxantrone (MTZ) is a synthetic anti-cancer drug with significant clinical effectiveness in the treatment of human malignancies but with severe side effects. Therefore, we have investigated the effect of vitamin C alone or combined with MTZ on MDA-MB231 and MCF7 human breast cancer cell lines to analyze their dose-effect on the tumor cellular growth, cellular death, cell cycle and cell signaling. Our results have evidenced that there is a dose-dependence on the inhibition of the breast carcinoma cell lines, MCF7 and MDA-MB231, treated with vitamin C and MTZ. Moreover, their combination induces: i) a cytotoxic effect by apoptotic death, ii) a mild G2/M elongation and iii) H2AX and mild PI3K activation. Hence, the formulation of vitamin C with MTZ induces a higher cytotoxicity level on tumor cells compared to a disjointed treatment. We have also found that the vitamin C enhances the MTZ effect allowing the utilization of lower chemotherapic concentrations in comparison to the single treatments.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Mitoxantrona/farmacologia , Antineoplásicos/toxicidade , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Mitoxantrona/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
ScientificWorldJournal ; 2014: 450390, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701168

RESUMO

Hepatocellular carcinoma is the fifth most common cancer worldwide and shows a complex clinical course, poor response to pharmacological treatment, and a severe prognosis. Thus, the aim of this study was to investigate whether tacrolimus (FK506) has synergistic antitumor effects with doxorubicin on two human hepatocellular carcinoma cell lines, Huh7 and HepG2. Cell viability was analyzed by Sulforhodamine B assay and synergic effect was evaluated by the software CalcuSyn. Cell apoptosis was evaluated using Annexin V and Dead Cell assay. Apoptosis-related protein PARP-1 cleaved and autophagy-related protein expressions (Beclin-1 and LC3B) were measured by western blotting analysis. Cytokines concentration in cellular supernatants after treatments was studied by Bio-Plex assay. Interestingly the formulation with doxorubicin and tacrolimus induced higher cytotoxicity level on tumor cells than single treatment. Moreover, our results showed that the mechanisms involved were (i) a strong cell apoptosis induction, (ii) contemporaneous decrease of autophagy activation, understood as prosurvival process, and (iii) downregulation of proinflammatory cytokines. In conclusion, future studies could relate to the doxorubicin/tacrolimus combination effects in mice models bearing HCC in order to see if this formulation could be useful in HCC treatment.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/administração & dosagem , Imunossupressores/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Tacrolimo/administração & dosagem , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia
17.
Mini Rev Med Chem ; 14(5): 444-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24766384

RESUMO

Ascorbic acid (AA), also known as vitamin C, was initially identified as the factor preventing the scurvy disease, and became very popular for its antioxidant properties. It is an important co-substrate of a large class of enzymes, and regulates gene expression by interacting with important transcription factors. AA is important in all stressful conditions that are linked to inflammatory processes and involve immunity. It has been known for decades that the persistence of an inflammatory stimulus is responsible for the onset of many diseases. AA is essential to stimulate the immune system by increasing the strength and protection of the organism. Therefore, its immunostimulant, antinflammatory, antiviral and antibacterial roles are well known, we have summarized its main functions in different types of diseases related to the immune system and chronic inflammation. We can conclude that AA, due to its effects and diversity of regulated pathways, is suitable for use in various fields of medicine including immunology, toxicology, radiobiology and others. AA is not preferable to be used as an isolated mode of treatment, but it can be co-applied as an adjuvant to regulate immunity, gene expression and other important physiological processes. However, we propose that future studies will take into consideration the research of new combinations of antioxidant natural substances and drugs.


Assuntos
Ácido Ascórbico/imunologia , Ácido Ascórbico/metabolismo , Sistema Imunitário/imunologia , Animais , Antioxidantes/química , Antioxidantes/fisiologia , Ácido Ascórbico/química , Doença Crônica , Humanos , Inflamação/imunologia , Inflamação/patologia
18.
PLoS One ; 7(6): e39486, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745767

RESUMO

Both type 2 diabetes (T2D) and chronic hepatitis C (CHC) infection are associated with increased risk of developing hepatocellular carcinoma (HCC). Cytokines are known to play an important role not only in the mechanisms of insulin resistance and glucose disposal defects but also in the pathological processes occurring in the liver during viral infection. We evaluated the serum levels of many cytokines, chemokines, adipokines and growth factors in patients with type 2 diabetes, CHC, CHC-related cirrhosis, CHC and type 2 diabetes and CHC-related cirrhosis and type 2 diabetes by BioPlex assay. The obtained data evidenced that the serum levels of some proteins are significantly up-regulated in all the patients or in those with only one disease and are often higher, even if in different amounts, when both diseases are associated. In particular, our results can be useful for the clinical monitoring of patients because they give specific information in regard to the progression from CHC to LC and CHD to LCD. Moreover, some molecules have shown significant correlations with clinical/biochemical data, suggesting the possibility to define mini-panels that can be used as specific markers for the different disease staging. However, our observations demonstrate that an integrated approach is much more powerful than isolated measurements to evaluate specific stages of these two complex pathologies (type 2 diabetes and chronic CHC hepatitis) alone or when they are concomitant in a patient. In fact it has emerged as an accurate, simple, specific, noninvasive, reproducible and less expensive method that, in future, could be included in routine clinical practice to monitor the association of type 2 diabetes and/or CHC to liver cirrhosis and, possibly, to cancer, and to improve the prognosis of these diseases.


Assuntos
Adipocinas/sangue , Quimiocinas/sangue , Citocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Hepatite C Crônica/sangue , Idoso , Feminino , Humanos , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade
19.
Molecules ; 16(8): 6365-77, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21796075

RESUMO

Hepatocellular carcinoma (HCC) is among the most aggressive and fatal cancers. Its treatment with conventional chemotherapeutic agents is inefficient, due to several side effects linked to impaired organ function typical of liver diseases. Consequently, there exists a decisive requirement to explore possible alternative chemopreventive and therapeutic strategies. The use of dietary antioxidants and micronutrients has been proposed for HCC successful management. The aim of this work was to test in vitro the effects of lipoic acid, caffeic acid and a new synthesized lipoyl-caffeic conjugate on human hepatoma cell lines in order to assess their effect on tumor cell growth. The results of cytotoxicity assays at different times showed that the cell viability was directly proportional to the molecule concentrations and incubation times. Moreover, to evaluate the pro- or anti-inflammatory effects of these molecules, the cytokine concentrations were evaluated in treated and untreated cellular supernatants. The obtained cytokine pattern showed that, at the increasing of three molecules concentrations, three pro-inflammatory cytokines such as IL-1ß, IL-8 and TNF-α decreased whereas the anti-inflammatory cytokine such as IL-10 increased.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Ácido Tióctico/farmacologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Células Hep G2 , Humanos , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Interleucina-8/biossíntese , Neoplasias Hepáticas/patologia , Espectrometria de Massas , Ácido Tióctico/análogos & derivados , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA