Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Gerontol ; 177: 112176, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080342

RESUMO

The aim of the study was to investigate the relationship between established clinical systemic biomarkers of ageing and the development of age-associated diseases and senescent cell biomarkers at tissue and cellular levels. Thirty-eight patients (mean age 70 ± 4.9 years) who were assessed for traditional risk factors for cardiovascular diseases were included. From all patients we obtained biomaterials (peripheral blood, skin, subcutaneous fatty tissue) and isolated different cell types (peripheral blood mononuclear cells (PBMC), fibroblasts (FB) and mesenchymal stem/stromal cells (MSC)). Isolated cells were analyzed using several senescent cells biomarkers such as telomere length and telomerase activity, proliferation rate, cell cycle inhibitor expression (p16 and p21), b-galactosidase activity, gH2AX expression. CD34+ cell content in peripheral blood was determined by flow cytometry. Systemic senescent cell-associated factors (insulin-like growth factor 1 (IGF-1), fibroblast growth factor 21 (FGF-21), osteoprogerin, ferritin, soluble vascular cell adhesion molecule (VCAM-1), intercellular adhesion molecule 1 (ICAM-1)) in peripheral blood as well as senescence-associated secretory phenotype (SASP) components in MSC and FB secretome were evaluated by ELISA. Skin and adipose tissue biopsy samples were analyzed histologically to assess senescent cell markers. A strong significant association of tissue p16 expression with age (r = 0.600, p < 0.001), pulse wave velocity (PWV) (r = 0.394, p = 0.015), vascular cell adhesion molecule (VCAM-1) content (r = 0.312, p = 0.006) in the systemic blood stream and p16 mRNA level in the blood mononuclear cells (MNCs) (r = 0.380, p = 0.046) were confirmed by correlation analysis. Statistically significant correlations were found with indicators of FBs and MSCs proliferation in culture and acquisition of SASP by the cells. Thus, p16 expression in tissues correlated significantly with interleukin-6 (IL-6) (r = 0.485, p < 0.05) and monocyte chemoattractant protein type 1 (MCP-1) (r = 0.372, p < 0.05) secretion by isolated cells. The results of regression analysis confirmed that, regardless of age, the expression of p16 was associated with the proliferation of isolated cells and IL-6 within SASP. Based on these findings, two models have been proposed to predict the level of p16 expression in tissues from the levels of other markers of senescent cell accumulation determined by non-invasive methods and available in clinical practice.


Assuntos
Senescência Celular , Molécula 1 de Adesão de Célula Vascular , Senescência Celular/genética , Leucócitos Mononucleares/metabolismo , Interleucina-6 , Análise de Onda de Pulso , Biomarcadores/metabolismo , Células Cultivadas
3.
Front Cell Dev Biol ; 10: 1050489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467400

RESUMO

Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.

4.
FEMS Microbiol Lett ; 335(1): 19-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22765162

RESUMO

A neutrophilic Fe(II)-oxidizing bacterium was isolated from the redox zone of a low-salinity spring in Krasnodar krai (Russia), at the FeS-Fe(OH)(3) interface deposited at the sediment surface. The cells of strain Sp-1 were short, thin motile vibrioids with one polar flagellum dividing by binary fission. The optimal values and ranges for pH and temperature were pH 6.2 (5.5-8) and 35 °C (5-45 °C), respectively. The organism was a facultative anaerobe. Strain Sp-1 was capable of organotrophic, lithoheterotrophic and mixotrophic growth with Fe(II) as an electron donor. The denitrification chain was 'disrupted'. Oxidation of Fe(II) was coupled to reduction of NO3 - to NO2 - or of N(2) O to N(2) , as well as under microaerobic conditions, with O(2) as an electron acceptor. The DNA G+C content was 64.2 mol%. According to the results of phylogenetic analysis, the strain was 10.6-12% remote from the closest relatives, members of the genera Sneathiella, Inquilinus, Oceanibaculum and Phaeospirillum within the Alphaproteobacteria. Based on its morphological, physiological and taxonomic characteristics, together with the results of phylogenetic analysis, strain Sp-1 is described as a member of a new genus Ferrovibrio gen. nov., with the type species Ferrovibrio denitrificans sp. nov. and the type strain Sp-1(T) (= LMG 25817(T)  = VKM B-2673(T) ).


Assuntos
Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/metabolismo , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Anaerobiose , Composição de Bases , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA