Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686639

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has transformed oncology research in many ways. Breast cancer is the most prevalent malignancy globally and triple negative breast cancer (TNBC) is one of the most aggressive subtypes with numerous challenges still to be faced. In this work, we have explained what CRISPR consists of and listed its applications in breast cancer while focusing on TNBC research. These are disease modelling, the search for novel genes involved in tumour progression, sensitivity to drugs and immunotherapy response, tumour fitness, diagnosis, and treatment. Additionally, we have listed the current delivery methods employed for the delivery of CRISPR systems in vivo. Lastly, we have highlighted the limitations that CRISPR technology is subject to and the future directions that we envisage. Overall, we have provided a round summary of the aspects concerning CRISPR in breast cancer/TNBC research.

2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762343

RESUMO

The sensitivity of pleural fluid (PF) analyses for the diagnosis of malignant pleural effusions (MPEs) is low to moderate. Knowledge about the pathobiology and molecular characteristics of this condition is limited. In this study, the crosstalk between stromal cells and tumor cells was investigated in vitro in order to reveal factors that are present in PF which can mediate MPE formation and aid in discriminating between benign and malignant etiologies. Eighteen PF samples, in different proportions, were exposed in vitro to mesothelial MeT-5A cells to determine the biological effects on these cells. Treatment of normal mesothelial MeT-5A cells with malignant PF increased cell viability, proliferation, and migration, and activated different survival-related signaling pathways. We identified differentially expressed miRNAs in PF samples that could be responsible for these changes. Consistently, bioinformatics analysis revealed an enrichment of the discovered miRNAs in migration-related processes. Notably, the abundance of three miRNAs (miR-141-3p, miR-203a-3, and miR-200c-3p) correctly classified MPEs with false-negative cytological examination results, indicating the potential of these molecules for improving diagnosis. Malignant PF produces phenotypic and functional changes in normal mesothelial cells. These changes are partly mediated by certain miRNAs, which, in turn, could serve to differentiate malignant from benign effusions.


Assuntos
MicroRNAs , Derrame Pleural Maligno , Humanos , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/genética , Sobrevivência Celular , Biologia Computacional , Reações Cruzadas , MicroRNAs/genética
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446068

RESUMO

Metastasis is the leading cause of colorectal cancer (CRC)-related deaths. Therefore, the identification of accurate biomarkers predictive of metastasis is needed to better stratify high-risk patients to provide preferred management and reduce mortality. In this study, we identified 13 new genes that modified circulating tumor cell numbers using a genome-wide genetic screen in a whole animal CRC model. Candidate genes were subsequently evaluated at the gene expression level in both an internal human CRC cohort of 153 patients and an independent cohort from the TCGA including 592 patients. Interestingly, the expression of one candidate, PLA2G12A, significantly correlated with both the time to recurrence and overall survival in our CRC cohort, with its low expression being an indicator of a poor clinical outcome. By examining the TCGA cohort, we also found that low expression of PLA2G12A was significantly enriched in epithelial-mesenchymal transition signatures. Finally, the candidate functionality was validated in vitro using three different colon cancer cell lines, revealing that PLA2G12A deficiency increases cell proliferation, migration, and invasion. Overall, our study identifies PLA2G12A as a prognostic biomarker of early-stage CRC, providing evidence that its deficiency promotes tumor growth and dissemination.


Assuntos
Neoplasias Colorretais , Animais , Humanos , Prognóstico , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Movimento Celular/genética , Biomarcadores Tumorais/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica
5.
Cancers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626131

RESUMO

Malignant pleural effusion (MPE) is a common severe complication of advanced lung adenocarcinoma (LAC). Neutrophils, an essential component of tumor infiltrates, contribute to tumor progression and their counts in MPE have been associated with worse outcome in LAC. This study aimed to evaluate phenotypical and functional changes of neutrophils induced by MPE to determine the influence of MPE immunomodulatory factors in neutrophil response and to find a possible association between neutrophil functions and clinical outcomes. Pleural fluid samples were collected from 47 LAC and 25 heart failure (HF) patients. We measured neutrophil degranulation products by ELISA, oxidative burst capacity and apoptosis by flow cytometry, and NETosis by fluorescence. The concentration of degranulation products was higher in MPE-LAC than in PE-HF. Functionally, neutrophils cultured with MPE-LAC had enhanced survival and neutrophil extracellular trap (NET) formation but had reduced oxidative burst capacity. In MPE, NETosis was positively associated with MMP-9, P-selectin, and sPD-L1 and clinically related to a worse outcome. This is the first study associating NETs with a worse outcome in MPE. Neutrophils likely contribute to tumor progression through the release of NETs, suggesting that they are a potential therapeutic target in LAC.

6.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267409

RESUMO

Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein-protein associations between transcription factors (TFs). Not surprisingly, protein-protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.

8.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680186

RESUMO

Colorectal cancer (CRC) is the fourth most common cause of cancer deaths worldwide. Although screening programs have reduced mortality rates, there is a need for research focused on finding the main factors that lead primary CRC to progress and metastasize. During tumor progression, malignant cells modify their habitat, corrupting or transforming cells of different origins and creating the tumor microenvironment (TME). Cells forming the TME like macrophages, neutrophils, and fibroblasts generate reactive oxygen species (ROS) that modify the cancer niche. The effects of ROS in cancer are very diverse: they promote cellular proliferation, epithelial-to-mesenchymal transition (EMT), evasion of cell death programs, migration, and angiogenesis. Due to the multifaceted role of ROS in cancer cell survival and function, ROS-modulating agents such as antioxidants or pro-oxidants could have therapeutic potential in cancer prevention and/or as a complement to systemic treatments. In this review, we will examine the main ROS producer cells and their effects on cancer progression and metastasis. Furthermore, we will enumerate the latest clinical trials where pro-oxidants and antioxidants have therapeutic uses in CRC.

9.
Animals (Basel) ; 11(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359231

RESUMO

We have established a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify novel genes playing a role in epigenetic regulation in mammals. We hypothesize that the ENU mutagenesis screen will lead to the discovery of unknown genes responsible of the maintenance of the epigenetic state as the genes found are modifiers of variegation of the transgene green fluorescent protein (GFP) expression in erythrocytes, which are named MommeD. Here we report the generation of a novel mutant mouse line, MommeD46, that carries a new missense mutation producing an amino acid transversion (L71P) in the dimerization domain of Nuclear Respiratory Factor 1 (Nrf1). The molecular characterization of the mutation reveals a decrease in the Nrf1 mRNA levels and a novel role of Nrf1 in the maintenance of the DNA hypomethylation in vivo. The heritability of the mutation is consistent with paternal imprinting and haploinsufficiency. Homozygous mutants display embryonic lethality at 14.5 days post-coitum and developmental delay. This work adds a new epi-regulatory role to Nrf1 and uncovers unknown phenotypical defects of the Nrf1 hypomorph. The generated mouse line represents a valuable resource for studying NRF1-related diseases.

10.
Cancers (Basel) ; 13(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199799

RESUMO

Liquid biopsy is emerging as a promising non-invasive diagnostic tool for malignant pleural effusions (MPE) due to the low sensitivity of conventional pleural fluid (PF) cytological examination and the difficulty to obtain tissue biopsies, which are invasive and require procedural skills. Currently, liquid biopsy is increasingly being used for the detection of driver mutations in circulating tumor DNA (ctDNA) from plasma specimens to guide therapeutic interventions. Notably, malignant PF are richer than plasma in tumor-derived products with potential clinical usefulness, such as ctDNA, micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circulating tumor cells (CTC). Tumor-educated cell types, such as platelets and macrophages, have also been added to this diagnostic armamentarium. Herein, we will present an overview of the role of the preceding biomarkers, collectively known as liquid biopsy, in PF samples, as well as the main technical approaches used for their detection and quantitation, including a proper sample processing. Technical limitations of current platforms and future perspectives in the field will also be addressed. Using PF as liquid biopsy shows promise for use in current practice to facilitate the diagnosis and management of metastatic MPE.

11.
Cancers (Basel) ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187205

RESUMO

Epithelial-to-mesenchymal transition (EMT) is one of the most accepted mechanisms leading to metastasis, which is responsible for most of the cancer-related deaths. In order to identify EMT-related biomarkers able to predict clinical outcomes in colorectal cancer (CRC), a systematic review and meta-analysis of prognostic factors associated to overall survival (OS) and progression free survival (PFS) was conducted. The systematic literature search included studies from June 2014 to June 2019 available at PubMed and Scopus databases. Meta-analysis was performed for those markers appearing in minimum three works with a total number of 8656 participants. The rest were enlisted and subjected to functional enrichment. We identified nine clinical biomarkers and 73 EMT-related molecular biomarkers associated to OS and/or PFS in CRC. The significant enrichment of biomarkers found involved in cellular oxidoreductase activity suggests that ROS generation plays an active role in the EMT process. Clinical practice needs new biomarkers with a reliable prognostic value able to predict clinical outcomes in CRC. Our integrative work supports the role of oxidative stress in tumorigenesis and EMT progress highlighting the importance of deciphering this specific mechanism to get a better understanding of metastasis.

12.
Expert Opin Drug Deliv ; 17(11): 1597-1613, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835538

RESUMO

INTRODUCTION: The use of nanoparticles for breast cancer targeting and treatment has become a reality. They are safe and possess interesting peculiarities such as the unspecific accumulation into the tumor site and the possibility to activate controlled drug release as compared to free drugs. However, there are still many areas of improvement which can certainly be addressed with the use of peptide-based elements. AREAS COVERED: The article reviews different preclinical strategies employing peptides and proteins in combination with nanoparticles for breast cancer targeting and treatment as well as peptide and protein-targeted encapsulated drugs, and it lists the current clinical status of therapies using peptides and proteins for breast cancer. EXPERT OPINION: The conjugation of protein and peptides can improve tumor homing of nanoparticles, increase cellular penetration and attack specific drivers and vulnerabilities of the breast cancer cell to promote tumor cytotoxicity while reducing secondary effects in healthy tissues. Examples are the use of antibodies, arginylglycylaspartic acid (RGD) peptides, membrane disruptive peptides, interference peptides, and peptide vaccines. Although their implementation in the clinic has been relatively slow up to now, we anticipate great progress in the field which will translate into more efficacious and selective nanotherapies for breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Portadores de Fármacos/química , Humanos , Oligopeptídeos/química , Peptídeos/química
13.
Cancers (Basel) ; 12(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679719

RESUMO

Radiotherapy is one of the cornerstone treatments for endometrial cancer and has successfully diminished the risk of local recurrences after surgery. However, a considerable percentage of patients suffers tumor relapse due to radioresistance mechanisms. Knowledge about the molecular determinants that confer radioresistance or radiosensitivity in endometrial cancer is still partial, as opposed to other cancers. In this review, we have highlighted different central cellular signaling pathways and processes that are known to modulate response to radiotherapy in endometrial cancer such as PI3K/AKT, MAPK and NF-κB pathways, growth factor receptor signaling, DNA damage repair mechanisms and the immune system. Moreover, we have listed different clinical trials employing targeted therapies against some of the aforementioned signaling pathways and members with radiotherapy. Finally, we have identified the latest advances in radiotherapy that have started being utilized in endometrial cancer, which include modern radiotherapy and radiogenomics. New molecular and genetic studies in association with the analysis of radiation responses in endometrial cancer will assist clinicians in taking suitable decisions for each individual patient and pave the path for personalized radiotherapy.

14.
Biomolecules ; 10(2)2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041255

RESUMO

The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.


Assuntos
Antineoplásicos/química , Organismos Aquáticos/enzimologia , Produtos Biológicos/farmacologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Organismos Aquáticos/metabolismo , Descoberta de Drogas/métodos , Humanos , Neoplasias/tratamento farmacológico
15.
Respirology ; 24(8): 799-804, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30903651

RESUMO

BACKGROUND AND OBJECTIVE: The discovery of highly accurate pleural fluid (PF) biomarkers of malignancy remains elusive. We assessed the operating characteristics of the PF epithelial cell adhesion molecule (EpCAM), claudin 4 (CL4) and human epididymis protein 4 (HE4) as potential markers of epithelial malignancies. METHODS: The three markers were quantified by immunoassays in the supernatants (s) and cell lysates (cl) of 175 PF samples. The cut-off values with 100% specificity were selected for malignant-benign discrimination. An immunocytochemical staining index score for each marker was also evaluated on PF cell blocks. The resulting best biomarker was further validated in two independent populations of 73 and 48 patients with pleural effusions (PE). RESULTS: An EpCAM(cl) >98 pg/g total lysate protein yielded 75% sensitivity, 100% specificity, negative likelihood ratio of 0.25 and area under the curve of 0.94 for labelling adenocarcinomatous effusions. Sensitivity reached 88% if EpCAM(cl) was combined with EpCAM immunostaining. One-third or more of the malignant effusions exhibiting a false-negative cytological fluid examination were correctly classified by EpCAM(cl) concentrations. Immunoassays for CL4 and HE4 were diagnostically useless. CONCLUSION: EpCAM(cl) is a new biomarker of adenocarcinomatous PE with meaningful discriminating properties.


Assuntos
Adenocarcinoma , Molécula de Adesão da Célula Epitelial/metabolismo , Derrame Pleural Maligno , Adenocarcinoma/classificação , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Biomarcadores Tumorais/metabolismo , Claudina-4/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/etiologia , Derrame Pleural Maligno/metabolismo , Sensibilidade e Especificidade , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA