Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
AAPS J ; 26(3): 61, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750400

RESUMO

The aim of this study was to investigate the in-use compatibility of eight commercially available closed system transfer device brands (CSTDs) with a formulated model antibody drug conjugate (ADC). Overall, in-use simulated dosing preparation applying the CSTD systems investigated raised concerns for several product quality attributes. The incompatibilities observed were mainly associated with increased visible and subvisible particles formation as well as significant changes in holdup volumes. Visible and subvisible particles contained heterogeneous mixtures of particle classes, with the majority of subvisible particles associated with silicone oil leaching from CSTD systems during simulated dose preparation upon contact with the ADC formulation. These observations demonstrate that CSTD use may adversely impact product quality and delivered dose which could potentially lead to safety and efficacy concerns during administration. Other product quality attributes measured including turbidity, color, ADC recovery, and purity by size exclusion HPLC, did not show relevant changes. It is therefore strongly recommended to test and screen the compatibility of CSTDs with the respective ADC, in a representative in-use simulated administration setting, during early CMC development, i.e., well before the start of clinical studies, to include information about compatibility and to ensure that the CSTD listed in the manuals of preparation for clinical handling has been thoroughly assessed before human use.


Assuntos
Imunoconjugados , Imunoconjugados/química , Imunoconjugados/administração & dosagem , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Tamanho da Partícula
2.
J Pharm Sci ; 113(8): 2055-2064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810881

RESUMO

This article evaluates the current gaps around the impact of post-manufacturing processes on the product qualities of protein-based biologics, with a focus on user centricity. It includes the evaluation of the regulatory guidance available, describes a collection of scientific literature and case studies to showcase the impact of post-manufacturing stresses on product and dosing solution quality. It also outlines the complexity of clinical handling and the need for communication, and alignment between drug providers, healthcare professionals, users, and patients. Regulatory agencies provide clear expectations for drug manufacturing processes, however, guidance supporting post-product manufacturing handling is less defined and often misaligned. This is problematic as the pharmaceutical products experience numerous stresses and processes which can potentially impact drug quality, safety and efficacy. This article aims to stimulate discussion amongst pharmaceutical developers, health care providers, device manufacturers, and public researchers to improve these processes. Patients and caregivers' awareness can be achieved by providing relevant educational material on pharmaceutical product handling.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/química , Proteínas/química , Controle de Qualidade , Indústria Farmacêutica/métodos
3.
J Pharmacol Toxicol Methods ; 124: 107474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866798

RESUMO

For the safety and efficacy of frozen cell therapy products, determination of cellular viability is key. However, results of cell viability measurements do not only depend on the cell line or on the inflicted stress, but also on the assay used, making inter-experimental comparisons difficult. The aim of this study was thus to assess commonly used viability assays in clinically relevant human mesenchymal/stromal stem cells and human A549 lung carcinoma cells. Post freeze-thaw stress viability and proliferation were evaluated under different conditions using trypan blue, acridine orange/DAPI stain, alamarBlue, ATP, and neutral red assays. Significant differences in cell viability between metabolic assays were observed, likely due to their distinct intrinsic detection mechanisms. Membrane-integrity based assays generally overestimated cell viabilities in this study. Furthermore, noticeable differences in inter-assay sensitivities were observed. These differences highlight that cell viability methods should be meticulously selected and their associated results carefully interpreted in a relevant context to ensure reliable conclusions. Indeed, although cell membrane integrity based assays are a popular choice to determine cellular quality attributes after freezing and thawing, we demonstrate that metabolic assays may be more suitable in this context.


Assuntos
Carcinoma , Células-Tronco , Humanos , Congelamento , Sobrevivência Celular , Pulmão , Criopreservação/métodos
4.
J Pharm Sci ; 112(6): 1681-1686, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36754231

RESUMO

Standard freezing protocols of clinically relevant cell lines commonly employ agents such as fetal bovine serum and dimethyl sulfoxide, which are a potential concern from both a regulatory and a patient safety perspective. The aim of this work was to develop formulations with safe and well tolerated excipients for the (cryo-) preservation of cell therapy products. We evaluated the cryoprotective capabilities of urea and glucose through measurements of cell metabolic activity. Freezing of clinically relevant human mesenchymal stromal/stem cells and human dermal fibroblasts at ≤ - 65°C at equimolar ratios of urea and glucose resulted in comparable viabilities to established dimethyl sulfoxide. Pre-incubation of human mesenchymal stromal/stem cells in trehalose and addition of mannitol and sucrose to the formulation further enhanced cell viability after freeze-thaw stress. Other cell types assessed (A549 and SK-N-AS) could not satisfactorily be preserved with urea and glucose, highlighting the need for tailored formulations to sustain acceptable cryopreservation.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Humanos , Crioprotetores/farmacologia , Glucose , Ureia , Congelamento , Criopreservação/métodos , Fatores Imunológicos , Células-Tronco/metabolismo , Sobrevivência Celular
5.
J Pharm Sci ; 108(1): 162-172, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30395835

RESUMO

Silicone oil, used as a lubricating coating in pharmaceutical containers, has been implicated as a cause of therapeutic protein aggregation. After adsorbing to silicone oil-water interfaces, proteins may form interfacial gels, which can be transported into solution as insoluble aggregates if the interfaces are perturbed. Mechanical interfacial perturbation of both monomeric recombinant human interleukin-1 receptor antagonist (rhIL-1ra) and PEGylated rhIL-1ra (PEG rhIL-1ra) in siliconized syringes resulted in losses of soluble monomeric protein. However, the loss of rhIL-1ra was twice that for PEG rhIL-1ra; even though in solution, PEG rhIL-1ra had a lower ΔGunf and exhibited a more perturbed tertiary structure at the interface. Net protein-protein interactions in solution for rhIL-1ra were attractive but increased steric repulsion because of PEGylation led to net repulsive interactions for PEG rhIL-1ra. Attractive interactions for rhIL-1ra were associated with increases in intermolecular ß-sheet content at the interface, whereas no intermolecular ß-sheet structures were observed for adsorbed PEG rhIL-1ra. rhIL-1ra formed interfacial gels that were 5 times stronger than those formed by PEG rhIL-1ra. Thus, the steric repulsion contributed by the PEGylation resulted in decreased interfacial gelation and in the reduction of aggregation, in spite of the destabilizing effects of PEGylation on the protein's conformational stability.

6.
Protein Sci ; 27(7): 1191-1204, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29388282

RESUMO

We investigated the effects of protein-protein interaction strength on interfacial viscoelastic properties and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) at silicone oil-water interfaces. Osmotic second virial coefficients determined by static light scattering were used to quantify protein-protein interactions in bulk solution. Attractive protein-protein interactions dominated at low ionic strengths and their magnitude decreased with increasing ionic strength, in contrast to repulsive interactions that would be expected based on uniformly charged sphere models. Interfacial shear rheometry was used to characterize rhIL-1ra interfacial layers. More attractive protein-protein interactions in bulk solution correlated with stronger interfacial gels. Thioflavin-T fluorescence measurements indicated that the intermolecular ß-sheet content of rhIL-1ra incubated in the presence of silicone oil-water interfaces correlated with gel strength. Siliconized syringes were used to probe the effects of mechanical perturbation of the interfacial gel layers. When rhIL-1ra solutions in siliconized glass syringes were subjected to end-over-end rotation, monomeric rhIL-1ra was lost from solution, and particles containing aggregated protein were released into the bulk aqueous phase. The loss of monomeric rhIL-1ra in response to mechanical perturbation was highest under the conditions where the strongest gels were observed. Aggregation of rhIL-1ra was strictly interface-induced and growth of aggregates in the bulk solution was not observed, even in the presence of particles released from silicone oil-water interfaces.


Assuntos
Benzotiazóis/química , Corantes Fluorescentes/química , Proteína Antagonista do Receptor de Interleucina 1/química , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Coloides/química , Elasticidade , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Modelos Teóricos , Óleos/química , Agregados Proteicos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reologia , Propriedades de Superfície , Viscosidade , Água/química
7.
Biophys J ; 111(9): 1831-1842, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806265

RESUMO

Dynamic light scattering can be used to measure the diffusivity of a protein within a formulation. The dependence of molecular diffusivity on protein concentration (traditionally expressed in terms of the interaction parameter kD) is often used to infer whether protein-protein interactions are repulsive or attractive, resulting in solutions that are colloidally stable or unstable, respectively. However, a number of factors unrelated to intermolecular forces can also impact protein diffusion, complicating this interpretation. Here, we investigate the influence of multicomponent diffusion in a ternary protein-salt-water system on protein diffusion and kD in the context of Nernst-Planck theory. This analysis demonstrates that large changes in protein diffusivity with protein concentration can result even for hard-sphere systems in the absence of protein-protein interactions. In addition, we show that dynamic light scattering measurements of diffusivity made at low ionic strength cannot be reliably used to detect protein conformational changes. We recommend comparing experimentally determined kD values to theoretically predicted excluded-volume contributions, which will allow a more accurate assessment of protein-protein interactions.


Assuntos
Mapeamento de Interação de Proteínas , Difusão , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA