Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
5.
Front Cardiovasc Med ; 11: 1396996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756750

RESUMO

Fabry disease (FD), also known as Anderson-Fabry disease, is a hereditary disorder of glycosphingolipid metabolism, caused by a deficiency of the lysosomal alpha-galactosidase A enzyme. This causes a progressive accumulation of glycosphingolipids in tissues and organs which represents the main pathogenetic mechanism of FD. The disease is progressive and multisystemic and is characterized by early symptoms and late complications (renal, cardiac and neurological dysfunction). Fatigue and exercise intolerance are early common symptoms in FD patients but the specific causes are still to be defined. In this narrative review, we deal with the contribution of cardiac and pulmonary dysfunctions in determining fatigue and exercise intolerance in FD patients.

6.
Front Cardiovasc Med ; 11: 1341590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327490

RESUMO

Fabry disease (FD) is a lysosomal storage disorder due to the impaired activity of the α-galactosidase A (GLA) enzyme which induces Gb3 deposition and multiorgan dysfunction. Exercise intolerance and fatigue are frequent and early findings in FD patients, representing a self-standing clinical phenotype with a significant impact on the patient's quality of life. Several determinants can trigger fatigability in Fabry patients, including psychological factors, cardiopulmonary dysfunctions, and primary alterations of skeletal muscle. The "metabolic hypothesis" to explain skeletal muscle symptoms and fatigability in Fabry patients is growing acknowledged. In this report, we will focus on the primary alterations of the motor system emphasizing the role of skeletal muscle metabolic disarrangement in determining the altered exercise tolerance in Fabry patients. We will discuss the most recent findings about the metabolic profile associated with Fabry disease offering new insights for diagnosis, management, and therapy.

7.
J Pharmacol Exp Ther ; 389(1): 34-39, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336381

RESUMO

Emerging evidence indicates that the relationship between coronavirus disease 2019 (COVID-19) and diabetes is 2-fold: 1) it is known that the presence of diabetes and other metabolic alterations poses a considerably high risk to develop a severe COVID-19; 2) patients who survived a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have an increased risk of developing new-onset diabetes. However, the mechanisms underlying this association are mostly unknown, and there are no reliable biomarkers to predict the development of new-onset diabetes. In the present study, we demonstrate that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells reliably predicts the risk of developing new-onset diabetes in COVID-19. This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. SIGNIFICANCE STATEMENT: We demonstrate for the first time that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells is able to reliably predict the risk of developing diabetes after having contracted coronavirus disease 2019 (COVID-19). This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. Our findings are also relevant when considering the emerging importance of post-acute sequelae of COVID-19, with systemic manifestations observed even months after viral negativization (long COVID).


Assuntos
COVID-19 , Diabetes Mellitus , Dislipidemias , Hipertensão , MicroRNAs , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Células Endoteliais , Progressão da Doença
9.
Cell Mol Life Sci ; 80(11): 323, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819449

RESUMO

BACKGROUND: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. OBJECTIVES: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. METHODS: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). RESULTS: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through ß-AR stimulation. CONCLUSIONS: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox.


Assuntos
Catecolaminas , Doxorrubicina , Ratos , Camundongos , Animais , Catecolaminas/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Apoptose , Miócitos Cardíacos/metabolismo , Macrófagos , Estresse Oxidativo
10.
Front Cardiovasc Med ; 10: 1156589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034330
11.
iScience ; 26(3): 106074, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879801

RESUMO

Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD.

12.
J Pharmacol Exp Ther ; 384(1): 72-78, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35764328

RESUMO

Fabry disease (FD) is a lysosomal storage disorder caused by mutations in the gene for α-galactosidase A, inducing a progressive accumulation of globotriaosylceramide (GB3) and its metabolites in different organs and tissues. GB3 deposition does not fully explain the clinical manifestations of FD, and other pathogenetic mechanisms have been proposed, requiring the identification of new biomarkers for monitoring FD patients. Emerging evidence suggests the involvement of mitochondrial alterations in FD. Here, we propose mitochondrial-related microRNAs (miRs) as potential biomarkers of mitochondrial involvement in FD. Indeed, we demonstate that miRs regulating different aspects of mitochondrial homeostasis including expression and assembly of respiratory chain, mitogenesis, antioxidant capacity, and apoptosis are consistently dysregulated in FD patients. Our data unveil a novel noncoding RNA signature of FD patients, indicating mitochondrial-related miRs as new potential pathogenic players and biomarkers in FD. SIGNIFICANCE STATEMENT: This study demonstrates for the first time that a specific signature of circulating mitochondrial miRs (mitomiRs) is dysregulated in FD patients. MitomiRs regulating fundamental aspects of mitochondrial homeostasis and fitness, including expression and assembly of the respiratory chain, mitogenesis, antioxidant capacity, and apoptosis are significantly dysregulated in FD patients. Taken together, these new findings introduce mitomiRs as unprecedented biomarkers of FD and point at mitochondrial dysfunction as a novel potential mechanistic target for therapeutic approaches.


Assuntos
Doença de Fabry , MicroRNAs , RNA Mitocondrial , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Doença de Fabry/sangue , Doença de Fabry/diagnóstico , Doença de Fabry/metabolismo , MicroRNAs/sangue , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , RNA Mitocondrial/sangue , RNA Mitocondrial/metabolismo
13.
J Pharmacol Exp Ther ; 384(1): 109-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772782

RESUMO

We hypothesized that exosomal microRNAs could be implied in the pathogenesis of thromboembolic complications in coronavirus disease 2019 (COVID-19). We isolated circulating exosomes from patients with COVID-19, and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for the internalization of the "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), including angiotensin converting enzyme 2, transmembrane protease serine 2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared with cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. SIGNIFICANCE STATEMENT: This work demonstrates for the first time that two specific microRNAs (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. These findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long COVID.


Assuntos
COVID-19 , Exossomos , MicroRNAs , Síndrome de COVID-19 Pós-Aguda , Trombose , Humanos , COVID-19/complicações , Células Endoteliais , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/metabolismo , SARS-CoV-2 , Trombose/genética , Trombose/metabolismo , Trombose/virologia , Exossomos/metabolismo
14.
Mol Oncol ; 16(16): 2959-2980, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35808840

RESUMO

Formyl peptide receptors (FPR1, FPR2 and FPR3) are innate immune sensors of pathogen and commensal bacteria and have a role in colonic mucosa homeostasis. We identified FPR1 as a tumour suppressor in gastric cancer cells due to its ability to sustain an inflammation resolution response with antiangiogenic potential. Here, we investigate whether FPR1 exerts similar functions in colorectal carcinoma (CRC) cells. Since it has been shown that the commensal bacterium Lactobacillus rhamnosus GG (LGG) can promote intestinal epithelial homeostasis through FPR1, we explored the possibility that it could induce proresolving and antiangiogenic effects in CRC cells. We demonstrated that pharmacologic inhibition or genetic deletion of FPR1 in CRC cells caused a reduction of proresolving mediators and a consequent upregulation of angiogenic factors. The activation of FPR1 mediates opposite effects. Proresolving, antiangiogenic and homeostatic functions were also observed upon treatment of CRC cells with supernatant of LGG culture, but not of other lactic acid or nonprobiotic bacteria (i.e. Bifidobacterium bifidum or Escherichia coli). These activities of LGG are dependent on FPR1 expression and on the subsequent MAPK signalling activation. Thus, the innate immune receptor FPR1 could be a regulator of the balance between microbiota, inflammation and cancer in CRC models.


Assuntos
Neoplasias Colorretais , Lacticaseibacillus rhamnosus , Probióticos , Humanos , Inflamação , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo
15.
Antioxidants (Basel) ; 10(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34829678

RESUMO

The biological mechanisms linking nutrition and antioxidants content of the diet with cardiovascular protection are subject of intense investigation. It has been demonstrated that dietary supplementation with cow, donkey or human milk, characterized by distinct nutritional properties, triggers significant differences in the metabolic and inflammatory status through the modulation of hepatic and skeletal muscle mitochondrial functions. Cardiac mitochondria play a key role for energy-demanding heart functions, and their disfunctions is leading to pathologies. Indeed, an altered heart mitochondrial function and the consequent increased reactive oxygen species (ROS) production and inflammatory state, is linked to several cardiac diseases such as hypertension and heart failure. In this work it was investigated the impact of the milk consumption on heart mitochondrial functions, inflammation and oxidative stress. In addition, it was underlined the crosstalk between mitochondrial metabolic flexibility, lipid storage and redox status as control mechanisms for the maintenance of cardiovascular health.

16.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440780

RESUMO

Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine highly expressed by epithelial cells and several innate and adaptive immune cells. TSLP exerts its biological effects by binding to a heterodimeric complex composed of TSLP receptor (TSLPR) and IL-7Rα. In humans, there are two TSLP isoforms: the short form (sfTSLP), constitutively expressed, and the long form (lfTSLP), which is upregulated in inflammation. TSLP has been implicated in the induction and progression of several experimental and human cancers. Primary human lung macrophages (HLMs), monocyte-derived macrophages (MDMs), and peripheral blood monocytes consitutively expressed sfTSLP mRNA. Incubation of HLMs, MDMs, and monocytes with lipopolysaccharide (LPS) or IL-4, but not with IL-13, induced TSLP release from HLMs. LPS, but not IL-4 or IL-13, induced CXCL8 release from HLMs. LPS, IL-4 alone or in combination with IL-13, induced the expression of lfTSLP, but not of sfTSLP from HLMs. Preincubation of HLMs with IL-4, alone or in combination with IL-13, but not IL-13 alone, synergistically enhanced TSLP release from LPS-activated macrophages. By contrast, IL-4, alone or in combination with IL-13, inhibited LPS-induced CXCL8 release from HLMs. Immunoreactive TSLP was detected in lysates of HLMs, MDMs, and monocytes. Incubation of HLMs with TSLP induced the release of proinflammatory (TNF-α), angiogenic (VEGF-A, angiopoietin 2), and lymphangiogenic (VEGF-C) factors. TSLP, TSLPR, and IL-7Rα were expressed in intratumoral and peritumoral areas of human lung cancer. sfTSLP and lfTSLP mRNAs were differentially expressed in peritumoral and intratumoral lung cancer tissues. The TSLP system, expressed in HLMs, MDMs, and monocytes, could play a role in chronic inflammatory disorders including lung cancer.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Citocinas/metabolismo , Neoplasias Pulmonares/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/metabolismo , Microambiente Tumoral , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Idoso , Proteínas Angiogênicas/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/farmacologia , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfangiogênese , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transdução de Sinais , Linfopoietina do Estroma do Timo
17.
Front Physiol ; 12: 660068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986694

RESUMO

Mitochondrial dysfunction is a crucial contributor to heart diseases. Alterations in energetic metabolism affect crucial homeostatic processes, such asATP production, the generation of reactive oxygen species, and the release of pro-apoptotic factors, associated with metabolic abnormalities. In response to energetic deficiency, the cardiomyocytes activate the Mitochondrial Quality Control (MQC), a critical process in maintaining mitochondrial health. This process is compromised in cardiovascular diseases depending on the pathology's severity and represents, therefore, a potential therapeutic target. Several potential targeting molecules within this process have been identified in the last years, and therapeutic strategies have been proposed to ameliorate mitochondria monitoring and function. In this context, physical exercise is considered a non-pharmacological strategy to protect mitochondrial health. Physical exercise regulates MQC allowing the repair/elimination of damaged mitochondria and synthesizing new ones, thus recovering the metabolic state. In this review, we will deal with the effect of physical exercise on cardiac mitochondrial function tracing its ability to modulate specific steps in MQC both in physiologic and pathologic conditions.

18.
Oxid Med Cell Longev ; 2021: 6684568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815657

RESUMO

BACKGROUND: Ergogenic nutritional supplementation is sought by professional athletes for improving physical performance; nevertheless, scientific evidence to support the chronic use of L-Arginine among water polo players is missing. METHODS: Seventeen male professional water polo players were randomly assigned to assume 5 grams per day of L-Arginine (n = 9) or placebo (n = 8) for 4 weeks. The players' fitness level was assessed in the maximal speed swimming test. Ear lobe blood samples taken before and after the effort for serum lactate content were analyzed. A speed-to-lactate ratio was generated at the baseline and after 4 weeks of treatment. We also tested the effects of L-Arginine in vitro, measuring NO production, mitochondrial respiration, and gene expression in human fibroblasts. RESULTS: L-Arginine did not modify BMI, muscle strength, and maximal speed at 200 meters after 4 weeks. However, L-Arginine ameliorated oxidative metabolism to exercise as suggested by the statistically significant lower lactate-to-speed ratio, which was not observed in placebo-treated controls. In vitro, L-Arginine induced the expression of a key regulator of mitochondrial biogenesis (PGC1α) and genes encoding for complex I and increased the production of nitric oxide and the maximal oxygen consumption rate. CONCLUSIONS: Chronic L-Arginine is safe and effective in ameliorating the oxidative metabolism of professional water polo players, through a mechanism of enhanced mitochondrial function.


Assuntos
Arginina/farmacologia , Suplementos Nutricionais , Aptidão Física/fisiologia , Esportes Aquáticos , Adulto , Exercício Físico , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Biogênese de Organelas
19.
Monaldi Arch Chest Dis ; 91(1)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33567818

RESUMO

The dysregulation of renin-angiotensin-system (RAS) plays a pivotal role in hypertension and in the development of the related target organ damage (TOD). The main goal of treating hypertension is represented by the long-term reduction of cardiovascular (CV) risk. RAS inhibition either by angiotensin converting enzyme (ACE)-inhibitors or by type 1 Angiotensin II receptors blockers (ARBs), reduce the incidence of CV events in hypertensive patients. Actually, ACE-inhibitors and ARBs have been demonstrated to be effective to prevent, or delay TOD like left ventricular hypertrophy, chronic kidney disease, and atherosclerosis. The beneficial effects of RAS blockers on clinical outcome of hypertensive patients are due to the key role of angiotensin II in the pathogenesis of TOD. In particular, Angiotensin II through an inflammatory-mediated mechanism plays a role in the initiation, progression and vulnerability of atherosclerotic plaque. In addition, Angiotensin II can be considered the hormonal transductor of the pressure overload in cardiac myocytes, and through an autocrine-paracrine mechanism plays a role in the development of left ventricular hypertrophy. Angiotensin II by modulating the redox status and the immune system participates to the development of chronic kidney disease. The RAS blocker should be considered the first therapeutic option in patients with hypertension, even if ACE-inhibitors and ARBs have different impact on CV prevention. ARBs seem to have greater neuro-protective effects, while ACE-inhibitors have greater cardio-protective action.


Assuntos
Doenças Cardiovasculares , Hipertensão , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Hipertensão/tratamento farmacológico , Sistema Renina-Angiotensina
20.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572752

RESUMO

Fabry disease (FD) is a lysosomal storage disorder, depending on defects in alpha-galactosidase A (GAL) activity. At the clinical level, FD shows a high phenotype variability. Among them, cardiovascular dysfunction is often recurrent or, in some cases, is the sole symptom (cardiac variant) representing the leading cause of death in Fabry patients. The existing therapies, besides specific symptomatic treatments, are mainly based on the restoration of GAL activity. Indeed, mutations of the galactosidase alpha gene (GLA) cause a reduction or lack of GAL activity leading to globotriaosylceramide (Gb3) accumulation in several organs. However, several other mechanisms are involved in FD's development and progression that could become useful targets for therapeutics. This review discusses FD's cardiovascular phenotype and the last findings on molecular mechanisms that accelerate cardiac cell damage.


Assuntos
Doenças Cardiovasculares/genética , Doença de Fabry/genética , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Doença de Fabry/complicações , Doença de Fabry/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Triexosilceramidas/genética , alfa-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA