Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 37(7): 573-581, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504748

RESUMO

Traits are inherent properties of organisms, but how are they defined for organismal networks such as mycorrhizal symbioses? Mycorrhizal symbioses are complex and diverse belowground symbioses between plants and fungi that have proved challenging to fit into a unified and coherent trait framework. We propose an inclusive mycorrhizal trait framework that classifies traits as morphological, physiological, and phenological features that have functional implications for the symbiosis. We further classify mycorrhizal traits by location - plant, fungus, or the symbiosis - which highlights new questions in trait-based mycorrhizal ecology designed to charge and challenge the scientific community. This new framework is an opportunity for researchers to interrogate their data to identify novel insights and gaps in our understanding of mycorrhizal symbioses.


Assuntos
Micorrizas , Ecologia , Micorrizas/fisiologia , Fenótipo , Plantas/microbiologia , Simbiose
2.
Plants (Basel) ; 10(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834908

RESUMO

The incorporation of native plant species is central to restoration efforts, but this is often limited by both the availability of seeds and the relatively low viability and germination rates of commercially available seeds. Although pre-sowing treatments are commonly used to improve germination rates of seeds, the efficacy of these treatments is found to vary across species. In this study, we tested how four pre-sow treatments (physical scarification, acid scarification, cold stratification, and aerated hydropriming) affected the viability and seed germination rates of 12 commercially available plant species native to south Texas and commonly used in restoration efforts. Our results show that the viability of the seeds have a wide range, from 78% to 1.25%. Similarly, the total germination rate ranged from 62% to 0%. We found that pre-sowing treatments accelerated the germination rate in 9 of 12 plant species tested, but the effect varied by treatment. Collectively, our results identify various methods to achieve the best germination rates for native plants of south Texas, to help improve restoration efforts across the region.

3.
Plants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451534

RESUMO

The Tamaulipan thornforests of south Texas and northeast Mexico are an ecologically and economically important conservation hotspot. Thornforest restoration is limited by native tree and shrub seedling availability for planting. Seedling shortages arise from low seed availability and knowledge gaps regarding best practices for germinating and growing the 70+ thornforest species desired for restoration plantings. To fill key knowledge gaps, we investigated three ecologically important thornforest species with low or highly variable germination or seedling survival rates: Ebenopsis ebano, Cordia boissieri, and Zanthoxylum fagara. For each, we quantified the effects of different dosages of chemical seed treatments used to promote germination (sulfuric acid, SA; gibberellic acid, GA; indole-3-butyric acid, IBA) on germination likelihood and timing. We also quantified the effects that these chemical seed treatments, soil media mixture type, and soil warming had on seedling survival, growth, and root morphology. Ebenopsis germination peaked (>90%) with 40-60 min SA treatment. Cordia germination peaked (40%) with 100 mg/L GA treatment. Zanthoxylum germination was negligible across all treatments. Seed molding was rare but stirring during SA treatment reduced Ebenopsis molding by 4%. Ebenopsis seedling survival, height, leaf count, and root morphology were minimally affected by seed treatments, generally reduced by warming, and influenced by soil mix, which also mediated responses to warming. These results suggest improvements to existing practices that could increase Ebenopsis germination by 10-20% and potentially double Cordia germination.

4.
Data Brief ; 25: 104201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31467947

RESUMO

Higher foliar nitrogen concentration in plants is often attributed to higher biomass assimilation and subsequently higher plant growth rate. To understand the underlying mechanism of extensive growth rate of an invasive plant, Old World climbing fern (Lygodium microphyllum), we analyzed the leaf tissue samples from the native and invaded habitats. In each habitat we selected 3 different locations with varying habitat characteristics (soil type, land use history and coexisting vegetation). Plant aboveground tissue collected from each site were analyzed for macro and micro nutrients. Total C and N were measured with a Truspec CN Analyzer. Total Ca, Fe, Mg, K, Mn, and P in plant tissue samples were measured using inductively coupled plasma mass spectrometry (ICP -MS). Here we present the difference in foliar nutrient concentration of invasive plant species in their native habitats and invaded habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA