Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820545

RESUMO

Climate adaptation corridors are widely recognized as important for promoting biodiversity resilience under climate change. Central America is part of the Mesoamerican biodiversity hotspot, but there have been no regional-scale analyses of potential climate adaptation corridors in Central America. We identified 2375 potential corridors throughout Central America that link lowland protected areas (≤ 500 m) with intact, high-elevation forests (≥ 1500 m) that represent potential climate change refugia. Whereas we found potential corridors in all Central American countries, potential corridors in Panama, Belize, and Honduras were most protected (medians = 64%, 49%, and 47%, respectively) and potential corridors in El Salvador were least protected (median = 10%). We also developed a corridor priority index based on the ecological characteristics and protected status of potential corridors and their associated start and end points. Compared to low- and medium-priority corridors, high-priority corridors (n = 160; top 7% of all corridors) were generally more protected, forested, and distributed across wider elevational gradients and more Key Biodiversity Areas, but also generally linked larger lowland protected areas to target areas that were larger, more protected, and spanned wider elevational gradients. For example, based on median values, high-priority corridors were 9% more protected and overlapped with 2-3 more Key Biodiversity Areas than low- and medium-priority corridors. Although high-elevation targets spanned considerably wider elevational gradients than lowland protected areas (medians = 695 vs. 142 m, respectively) and thus may be more likely to support refugia, they were considerably smaller than lowland protected areas (medians = 11 vs. 50 km2 respectively) and mostly unprotected (median = 4% protection). This initial, regional assessment can help prioritize locations for finer-scale research, conservation, and restoration activities in support of climate adaptation corridors throughout Central America and highlights the need for greater conservation of potential high-elevation refugia.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , América Central , Florestas , Refúgio de Vida Selvagem
2.
Sci Rep ; 13(1): 842, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646696

RESUMO

As more ambitious protected area (PA) targets for the post-2020 global biodiversity framework are set beyond Aichi Target 11, renew thinking into spatial prioritisation is required to enable PA expansion that maximises environmental values. Our study focuses on the biodiverse and forest-rich Indonesian island of Sulawesi, which has a terrestrial PA network that covers 10% of the island. We used Marxan to investigate trade-offs in the design of an expanded PA network that prioritised different conservation features (biodiversity, forest cover, carbon stock, karst and valuable metal-rich areas) under varying island-wide coverage targets (17%, 30%, and 50%). Our first scenario, which required existing PAs to be selected, required larger areas to meet these coverage targets, in contrast to our second scenario, which allowed for any part of the island to be chosen, irrespective of PA status. The vast Mekongga and Bangkiriang Landscapes, and Gorontalo corridor were consistently identified as a high priority for protection under all scenarios. To meet our conservation targets through expanding current PAs, creating new PAs, and creating corridors that connect existing PAs, we used a spatially explicit three-phase approach. Our findings identified 26,508 km2 of priority areas to be included in the current PA network, potentially assisting Indonesia in meeting its post-2020 GBF target, if our approach is replicated across Indonesia as a national or sub-national analysis. We discuss various land management options through other effective area-based conservation measures (OECMs) and the costs to deliver this strategy.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Indonésia , Biodiversidade , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA