Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 821: 153248, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051450

RESUMO

The presented paper represents a comprehensive analysis of ochre sediments precipitated from Fe rich drainage waters contaminated by arsenic and antimony. Ochre samples from three abandoned Sb deposits were collected in three different seasons and were characterized from the mineralogical, geochemical, and microbiological point of view. They were formed mainly by poorly crystallized 2-line ferrihydrite, with the content of arsenic in samples ranging from 7 g·kg-1 to 130 g·kg-1 and content of antimony ranging from 0.25 g·kg-1 up to 12 g·kg-1. Next-generation sequencing approach with 16S RNA, 18S RNA and ITS markers was used to characterize bacterial, fungal, algal, metazoal and protozoal communities occurring in the HFOs. In the 16S RNA, the analysis dominated bacteria (96.2%) were mainly Proteobacteria (68.8%) and Bacteroidetes (10.2%) and to less extent also Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Nitrosprae and Chloroflexi. Alpha and beta diversity analysis revealed that the bacterial communities of individual sites do not differ significantly, and only subtle seasonal changes were observed. In this As and Sb rich, circumneutral microenvironment, rich in iron, sulfates and carbonates, methylotrophic bacteria (Methylobacter, Methylotenera), metal/reducing bacteria (Geobacter, Rhodoferax), metal-oxidizing and denitrifying bacteria (Gallionella, Azospira, Sphingopyxis, Leptothrix and Dechloromonas), sulfur-oxidizing bacteria (Sulfuricurvum, Desulphobulbaceae) and nitrifying bacteria (Nitrospira, Nitrosospira) accounted for the most dominant ecological groups and their impact over Fe, As, Sb, sulfur and nitrogen geocycles is discussed. This study provides evidence of diverse microbial communities that exist in drainage waters and are highly important in the process of mobilization or immobilization of the potentially toxic elements.


Assuntos
Arsênio , Microbiota , Antimônio/análise , Arsênio/análise , Bactérias , Óxidos , RNA Ribossômico 16S/genética
2.
J Hazard Mater ; 424(Pt A): 127136, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879539

RESUMO

The current demand for alternative water sources requires the incorporation of low-cost composites in remediation technologies. These represent a sustainable alternative to more expensive, commercially used adsorbents. The main objective of this comprehensive field-scale study was to incorporate the layered double hydroxides (LDHs) into the hybrid biochar-based composites and apply an innovative material to remediate As/Sb-rich mine waters. The presence of hydrous Fe oxides (HFOs) within the composite enhanced the total adsorption efficiency of the composite for As(V) and Sb(V). The kinetic data fitted a pseudo-second order model. Equilibrium experiments confirmed that the composite had a stronger interaction with As(V) than with Sb(V). The efficient removal of As(V) from mine water was achieved in both batch and continuous flow column systems, reaching up to 98% and 80%, respectively. Sb(V) showed different behavior to As(V) during mine water treatment, reaching adsorption efficiencies of up to 39% and 26% in batch and column experiments, respectively. The migration of Sb(V) in mine water was mostly attributed to its dispersion before it was able to show affinity to the composite. In general, the proposed column technology is suitable for the field remediation of small volumes of contaminated water, and thus has significant commercial potential.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Hidróxidos , Cinética , Poluentes Químicos da Água/análise
3.
Environ Monit Assess ; 191(5): 263, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953219

RESUMO

The aims of this study were to investigate the occurrence and distribution of total mercury (Hg) and other trace elements of environmental concern, such as arsenic (As), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and vanadium (V), in soils from the abandoned Merník cinnabar mine in eastern Slovakia. For this purpose, thirty soil samples from two depth intervals within the mine area (n = 60 soil samples) and additional sixteen soil samples from adjacent areas (n = 25 soil samples) were collected. Total Hg was measured by atomic absorption spectrometry, while As and other metals were analyzed using inductively coupled plasma atomic emission spectrometry. High mercury concentrations (> 100 mg/kg with a maximum of 951 mg/kg) were observed only in surface soils close to mine waste heaps and adits. Otherwise, Hg concentrations in the majority of surface soils were lower (0.14-19.7 mg/kg), however, higher than Hg in soils collected from sites outside the mine area (0.19-6.92 mg/kg) and even considerably higher than Hg in soils at sites not influenced by the Merník mine. Elevated Cr and Ni concentrations in soils regardless of their sampling sites (mean of 276 mg/kg and median of 132 mg/kg for Cr and 168 mg/kg and 81 mg/kg for Ni, respectively) were attributed to the lithology of the area; the soils are underlain by the sediments of the Central Carpathian Palaeogene, containing a detritus of ultrabasic rocks. As our geochemical data are compositional in nature, they were further treated by compositional data analysis (CoDA). Robust principal component analysis (RPCA) applied on centred (clr) log-ratio-transformed data and correlation analysis of compositional parts based on symmetric balances distinguished very well different sources of origin for the chemical elements. The following three element associations were identified: Hg association with the main source in mining/roasting, Cr-Ni association derived from bedrock and As-Cu-Mn-Pb-Zn-V association (natural background and minor sulphides/sulfosalts in mineralized rocks). The values of geoaccumulation index and enrichment factor suggested that concentrations of Hg in the soils were influenced by human industrial activities.


Assuntos
Cromo/análise , Mercúrio/análise , Níquel/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Monitoramento Ambiental , Atividades Humanas , Humanos , Compostos de Mercúrio , Mineração , Eslováquia
4.
Environ Sci Pollut Res Int ; 20(11): 7627-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23436124

RESUMO

Tailings deposits generated from mining activities represent a potential risk for the aquatic environment through the release of potentially toxic metals and metalloids occurring in a variety of minerals present in the tailings. Physicochemical and mineralogical characteristics of tailings such as total concentrations of chemical elements, pH, ratio of acid-producing to acid-neutralizing minerals, and primary and secondary mineral phases are very important factors that control the actual release of potentially toxic metals and metalloids from the tailings to the environment. The aims of this study are the determination of geochemical and mineralogical characteristics of tailings deposited in voluminous impoundment situated near the village of Markusovce (eastern Slovakia) and identification of the processes controlling the mobility of selected toxic metals (Cu, Hg) and metalloids (As, Sb). The studied tailings have unique features in comparison with the other tailings investigated previously because of the specific mineral assemblage primarily consisting of barite, siderite, quartz, and minor sulfides. To meet the aims, samples of the tailings were collected from 3 boreholes and 15 excavated pits and subjected to bulk geochemical analyses (i.e., determination of chemical composition, pH, Eh, acid generation, and neutralization potentials) combined with detailed mineralogical characterization using optical microscopy, X-ray diffraction (XRD), electron microprobe analysis (EMPA), and micro-X-ray diffraction (µ-XRD). Additionally, the geochemical and mineralogical factors controlling the transfer of potentially toxic elements from tailings to waters were also determined using short-term batch test (European norm EN 12457), sampling of drainage waters and speciation-equilibrium calculations performed with PHREEQC. The tailings mineral assemblage consists of siderite, barite, quartz, and dolomite. Sulfide minerals constitute only a minor proportion of the tailings mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. µ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (<5-7.0 µg/L Cu, <0.1-0.3 µg/L Hg, 5.0-16 µg/L As, and 5.0-43 µg/L Sb). Primary factors influencing aqueous chemistry at the site are mutual processes of sulfide oxidation and carbonate dissolution as well as precipitation reactions and sorption onto hydrous ferric oxides abundantly present at the discharge of the impoundment waters. The results of the study show that, presently, there are no threats of acid mine drainage formation at the site and significant contamination of natural aquatic ecosystem in the close vicinity of the tailings impoundment.


Assuntos
Metaloides/análise , Metais/análise , Mineração , Poluentes Químicos da Água/análise , Carbonatos/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Minerais/análise , Eslováquia , Sulfetos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA