Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 228: 142-147, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30223051

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nigella sativa L. seed has been widely used in traditional medicine for the treatment of diabetes. The major reason for vascular complications in diabetic patients is endothelial dysfunction. However, the impact of N. sativa seed on endothelial dysfunction in diabetes remains unclear. AIM OF THE STUDY: This study was conducted to evaluate the effect of the hydroalcoholic extract of N. sativa seed on eNOS, VCAM-1, and LOX-1 genes expression and the vasoreactivity of aortic rings to acetylcholine (Ach) in streptozotocin (STZ)-induced diabetic rat. MATERIALS AND METHODS: Treated rats received N. sativa seed extract (100, 200, and 400 mg/kg) daily by gavage for 6 weeks. The fasting blood glucose and lipids were measured and atherogenic index of plasma (AIP) was calculated. The endothelium-dependent vasoreactivity responses of isolated aortic rings were evaluated in the presence of cumulative concentrations of Ach (10-8-10-5 M). eNOS, VCAM-1, and LOX-1 genes expression in aortic tissue was assessed by using real time polymerase chain reaction (PCR). RESULTS: Male diabetic Wistar rats treated with N. sativa seed extract for six weeks reduced serum glucose and lipids and improved AIP. The vasorelaxant responses of aortic rings to Ach were markedly improved. N. sativa seed significantly increased eNOS in mRNA expression level and function, while it decreased VCAM-1 and LOX-1 expressions in vascular cells of aortic tissue which assessed only in mRNA level. CONCLUSIONS: The results of this study showed that N. sativa seed more likely, has antidiabetic and antihyperlipidemic properties and improved vasoreactivity, endothelial dysfunction, and vascular inflammation in diabetic rats' aorta.


Assuntos
Aorta Torácica/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Nigella sativa , Extratos Vegetais/farmacologia , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Animais , Aorta Torácica/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo III/genética , Ratos Wistar , Receptores Depuradores Classe E/genética , Sementes , Molécula 1 de Adesão de Célula Vascular/genética , Vasodilatação/efeitos dos fármacos
2.
Rev. bras. farmacogn ; 27(3): 324-328, May-June 2017. graf
Artigo em Inglês | LILACS | ID: biblio-898679

RESUMO

Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05). In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA