Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 13(1): 14437, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660181

RESUMO

In multispectral digital in-line holographic microscopy (DIHM), aberrations of the optical system affect the repeatability of the reconstruction of transmittance, phase and morphology of the objects of interest. Here we address this issue first by model fitting calibration using transparent beads inserted in the sample. This step estimates the aberrations of the optical system as a function of the lateral position in the field of view and at each wavelength. Second, we use a regularized inverse problem approach (IPA) to reconstruct the transmittance and phase of objects of interest. Our method accounts for shift-variant chromatic and geometrical aberrations in the forward model. The multi-wavelength holograms are jointly reconstructed by favouring the colocalization of the object edges. The method is applied to the case of bacteria imaging in Gram-stained blood smears. It shows our methodology evaluates aberrations with good repeatability. This improves the repeatability of the reconstructions and delivers more contrasted spectral signatures in transmittance and phase, which could benefit applications of microscopy, such as the analysis and classification of stained bacteria.


Assuntos
Holografia , Microscopia , Bactérias , Calibragem , Excipientes
2.
Opt Express ; 30(21): 38383-38404, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258405

RESUMO

In the context of digital in-line holographic microscopy, we describe an unsupervised methodology to estimate the aberrations of an optical microscopy system from a single hologram. The method is based on the Inverse Problems Approach reconstructions of holograms of spherical objects. The forward model is based on a Lorenz-Mie model distorted by optical aberrations described by Zernike polynomials. This methodology is thus able to characterize most varying aberrations in the field of view in order to take them into account to improve the reconstruction of any sample. We show that this approach increases the repeatability and quantitativity of the reconstructions in both simulations and experimental data. We use the Cramér-Rao lower bounds to study the accuracy of the reconstructions. Finally, we demonstrate the efficiency of this aberration calibration with image reconstructions using a phase retrieval algorithm as well as a regularized inverse problems algorithm.

3.
Appl Opt ; 61(9): F34-F46, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333224

RESUMO

Lensless inline holography can produce high-resolution images over a large field of view (FoV). In a previous work [Appl. Opt.60, B38 (2021)APOPAI0003-693510.1364/AO.414976], we showed that (i) the actual FoV can be extrapolated outside of the camera FoV and (ii) the effective resolution of the setup can be several times higher than the resolution of the camera. In this paper, we present a reconstruction method to recover high resolution with an extrapolated FoV image of the phase and the amplitude of a sample from aliased intensity measurements taken at a lower resolution.

4.
Appl Opt ; 60(10): B38-B48, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798135

RESUMO

The purpose of this work is to provide a theoretically grounded assessment on the field of view and bandwidth of a lensless holographic setup. Indeed, while previous works have presented results with super-resolution and field-of-view extrapolation, there are no well-established rules to determine them. We show that the theoretical field of view can be large with a spatial-frequency bandwidth only limited by the wavelength, leading to an unthinkable number of degrees of freedom. To keep a realistic field of view and bandwidth, we propose several practical bounds based on a few setup properties, namely, the noise level and spatiotemporal coherence of the source.

5.
Opt Express ; 26(3): 2749-2763, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401811

RESUMO

Taking benefit from recent advances in both phase retrieval and estimation of refractive indices from holographic measurements, we propose a unified framework to reconstruct them from intensity-only measurements. Our method relies on a generic and versatile formulation of the inverse problem and includes sparsity constraints. Its modularity enables the use of a variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as well as various regularizers. We present reconstructions that deploy either the beam-propagation method or the iterative Lippmann-Schwinger model, combined with total-variation regularization. They suggest that our proposed (intensity-only) method can reach the same performance as reconstructions from holographic (complex) data. This is of particular interest from a practical point of view because it allows one to simplify the acquisition setup.

6.
Methods ; 136: 17-23, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162547

RESUMO

Phase imaging provides intensity contrast to visualize transparent samples such as found in biology without any staining. Among them, digital holographic microscopy (DHM) is a well-known quantitative phase method. Lensfree implementations of DHMs offer the added advantage to provide large field of views (several mm2 compared to several hundred µm2) and more compact setups that traditional DHM which have high quality microscope objectives. In this article, a lensfree DHM is presented using a side illumination technique in order to further reduce the device size. Its practical use is described and results on a transparent (phase only) sample are shown.


Assuntos
Holografia/métodos , Lentes , Microscopia/métodos , Humanos , Processamento de Imagem Assistida por Computador
7.
Opt Express ; 25(4): 4438-4445, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241646

RESUMO

Lensless quantitative phase imaging is of high interest for obtaining a large field of view (FOV), typically the size of the camera chip, to observe biological cell material with high contrast. It has the potential to be widely spread due to its inherent simplicity. However, the tradeoff is the added complexity due to the illumination. Current illumination systems are several centimeters away from the sample, use mechanics to obtain super resolution (i.e., smaller than the detector pixel size) or different illumination directions, and block the view to the sample. In this paper, we propose and demonstrate a side illumination system which reduces the height by an order of magnitude while providing an unobstructed view of the sample. We achieve this by shaping the illumination using multiplexed analog holograms that produce 9 illumination angles. We demonstrate experimentally imaging of phase samples with a FOV of ~17mm2.

8.
Methods ; 115: 28-41, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057586

RESUMO

Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Software , Algoritmos , Animais , Células Eucarióticas/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Razão Sinal-Ruído
9.
Appl Opt ; 55(26): 7412-21, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27661383

RESUMO

We present a new formulation of a family of proximity operators that generalize the projector step for phase retrieval. These proximity operators for noisy intensity measurements can replace the classical "noise-free" projection in any projection-based algorithm. They are derived from a maximum-likelihood formulation and admit closed form solutions for both the Gaussian and the Poisson cases. In addition, we extend these proximity operators to under-sampled intensity measurements. To assess their performance, these operators are exploited in a classical Gerchberg-Saxton algorithm. We present numerical experiments showing that the reconstructed complex amplitudes with these proximity operators always perform better than using the classical intensity projector, while their computational overhead is moderate.

10.
J Opt Soc Am A Opt Image Sci Vis ; 31(11): 2334-45, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25401343

RESUMO

Astronomical optical interferometers sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid perturbations caused by atmospheric turbulence, the phases of the complex Fourier samples (visibilities) cannot be directly exploited. Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic optical interferometric instruments are now paving the way to multiwavelength imaging. This paper is devoted to the derivation of a spatiospectral (3D) image reconstruction algorithm, coined Polychromatic opticAl INTErferometric Reconstruction software (PAINTER). The algorithm relies on an iterative process, which alternates estimation of polychromatic images and complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also differential phases, which helps to better constrain the polychromatic reconstruction. Simulations on synthetic data illustrate the efficiency of the algorithm and, in particular, the relevance of injecting a differential phases model in the reconstruction.

11.
J Opt Soc Am A Opt Image Sci Vis ; 30(2): 160-70, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23456050

RESUMO

Optical interferometers provide multiple wavelength measurements. In order to fully exploit the spectral and spatial resolution of these instruments, new algorithms for image reconstruction have to be developed. Early attempts to deal with multichromatic interferometric data have consisted in recovering a gray image of the object or independent monochromatic images in some spectral bandwidths. The main challenge is now to recover the full three-dimensional (spatiospectral) brightness distribution of the astronomical target given all the available data. We describe an approach to implement multiwavelength image reconstruction in the case where the observed scene is a collection of point-like sources. We show the gain in image quality (both spatially and spectrally) achieved by globally taking into account all the data instead of dealing with independent spectral slices. This is achieved thanks to a regularization that favors spatial sparsity and spectral grouping of the sources. Since the objective function is not differentiable, we had to develop a specialized optimization algorithm that also accounts for non-negativity of the brightness distribution.

12.
J Opt Soc Am A Opt Image Sci Vis ; 24(12): 3708-16, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18059923

RESUMO

We propose a microparticle detection scheme in digital holography. In our inverse problem approach, we estimate the optimal particles set that best models the observed hologram image. Such a method can deal with data that have missing pixels. By considering the camera as a truncated version of a wider sensor, it becomes possible to detect particles even out of the camera field of view. We tested the performance of our algorithm against simulated and experimental data for diluted particle conditions. With real data, our algorithm can detect particles far from the detector edges in a working area as large as 16 times the camera field of view. A study based on simulated data shows that, compared with classical methods, our algorithm greatly improves the precision of the estimated particle positions and radii. This precision does not depend on the particle's size or location (i.e., whether inside or outside the detector field of view).

13.
J Opt Soc Am A Opt Image Sci Vis ; 24(4): 1164-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17361304

RESUMO

We propose a microparticle localization scheme in digital holography. Most conventional digital holography methods are based on Fresnel transform and present several problems such as twin-image noise, border effects, and other effects. To avoid these difficulties, we propose an inverse-problem approach, which yields the optimal particle set that best models the observed hologram image. We resolve this global optimization problem by conventional particle detection followed by a local refinement for each particle. Results for both simulated and real digital holograms show strong improvement in the localization of the particles, particularly along the depth dimension. In our simulations, the position precision is > or =1 microm rms. Our results also show that the localization precision does not deteriorate for particles near the edge of the field of view.


Assuntos
Holografia/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Nanopartículas/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Análise Numérica Assistida por Computador , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA