Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 14(1): 16109, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997324

RESUMO

This work was inspired by the observation that a majority of MR-electrical properties tomography studies are based on direct comparisons with ex vivo measurements carried out on post-mortem samples in the 90's. As a result, the in vivo conductivity values obtained from MRI in the megahertz range in different types of tissues (brain, liver, tumors, muscles, etc.) found in the literature may not correspond to their ex vivo equivalent, which still serves as a reference for electromagnetic modelling. This study aims to pave the way for improving current databases since the definition of personalized electromagnetic models (e.g. for Specific Absorption Rate estimation) would benefit from better estimation. Seventeen healthy volunteers underwent MRI of both brain and thorax/abdomen using a three-dimensional ultrashort echo-time (UTE) sequence. We estimated conductivity (S/m) in several classes of macroscopic tissue using a customized reconstruction method from complex UTE images, and give general statistics for each of these regions (mean-median-standard deviation). These values are used to find possible correlations with biological parameters such as age, sex, body mass index and/or fat volume fraction, using linear regression analysis. In short, the collected in vivo values show significant deviations from the ex vivo values in conventional databases, and we show significant relationships with the latter parameters in certain organs for the first time, e.g. a decrease in brain conductivity with age.


Assuntos
Encéfalo , Condutividade Elétrica , Imageamento por Ressonância Magnética , Tronco , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto , Pessoa de Meia-Idade , Tronco/diagnóstico por imagem , Idoso , Fatores Etários , Adulto Jovem , Fatores Sexuais , Tecido Adiposo/diagnóstico por imagem
2.
Magn Reson Med ; 91(6): 2374-2390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225861

RESUMO

PURPOSE: To evaluate the performance of various MR electrical properties tomography (MR-EPT) methods at 3 T in terms of absolute quantification and spatial resolution limit for electrical conductivity. METHODS: Absolute quantification as well as spatial resolution performance were evaluated on homogeneous phantoms and a phantom with holes of different sizes, respectively. Ground-truth conductivities were measured with an open-ended coaxial probe connected to a vector network analyzer (VNA). Four widely used MR-EPT reconstruction methods were investigated: phase-based Helmholtz (PB), phase-based convection-reaction (PB-cr), image-based (IB), and generalized-image-based (GIB). These methods were compared using the same complex images from a 1 mm-isotropic UTE sequence. Alternative transceive phase acquisition sequences were also compared in PB and PB-cr. RESULTS: In large homogeneous phantoms, all methods showed a strong correlation with ground truth conductivities (r > 0.99); however, GIB was the best in terms of accuracy, spatial uniformity, and robustness to boundary artifacts. In the resolution phantom, the normalized root-mean-squared error of all methods grew rapidly (>0.40) when the hole size was below 10 mm, with simplified methods (PB and IB), or below 5 mm, with generalized methods (PB-cr and GIB). CONCLUSION: VNA measurements are essential to assess the accuracy of MR-EPT. In this study, all tested MR-EPT methods correlated strongly with the VNA measurements. The UTE sequence is recommended for MR-EPT, with the GIB method providing good accuracy for structures down to 5 mm. Structures below 5 mm may still be detected in the conductivity maps, but with significantly lower accuracy.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos , Condutividade Elétrica , Imagens de Fantasmas , Tomografia/métodos
3.
Magn Reson Med ; 85(2): 762-776, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32783236

RESUMO

PURPOSE: To develop a fast and easy-to-use electrical properties tomography (EPT) method based on a single MR scan, avoiding both the need of a B1 -map and transceive phase assumption, and that is robust against noise. THEORY: Derived from Maxwell's equations, conductivity, and permittivity are reconstructed from a new partial differential equation involving the product of the RF fields and its derivatives. This also allows us to clarify and revisit the relevance of common assumptions of MREPT. METHODS: Our new governing equation is solved using a 3D finite-difference scheme and compared to previous frameworks. The benefits of our method over selected existing MREPT methods are demonstrated for different simulation models, as well as for both an inhomogeneous agar phantom gel and in vivo brain data at 3T. RESULTS: Simulation and experimental results are illustrated to highlight the merits of the proposed method over existing methods. We show the validity of our algorithm in versatile configurations, with many transition regions notably. Complex admittivity maps are also provided as a complementary MR contrast. CONCLUSION: Because it avoids time-consuming RF field mapping and generalizes the use of standard MR image for electrical properties reconstruction, this contribution is promising as a new step forward for clinical applications.


Assuntos
Imageamento por Ressonância Magnética , Tomografia , Algoritmos , Condutividade Elétrica , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
4.
Magn Reson Med ; 82(5): 1929-1945, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199011

RESUMO

PURPOSE: Current electrocardiography (ECG) devices in MRI use non-conventional electrode placement, have a narrow bandwidth, and suffer from signal distortions including magnetohydrodynamic (MHD) effects and gradient-induced artifacts. In this work a system is proposed to obtain a high-quality 12-lead ECG. METHODS: A network of N electrically independent MR-compatible ECG sensors was developed (N = 4 in this study). Each sensor uses a safe technology - short cables, preamplification/digitization close to the patient, and optical transmission - and provides three bipolar voltage leads. A matrix combination is applied to reconstruct a 12-lead ECG from the raw network signals. A subject-specific calibration is performed to identify the matrix coefficients, maximizing the similarity with a true 12-lead ECG, acquired with a conventional 12-lead device outside the scan room. The sensor network was subjected to radiofrequency heating phantom tests at 3T. It was then tested in four subjects, both at 1.5T and 3T. RESULTS: Radiofrequency heating at 3T was within the MR-compatibility standards. The reconstructed 12-lead ECG showed minimal MHD artifacts and its morphology compared well with that of the true 12-lead ECG, as measured by correlation coefficients above 93% (respectively, 84%) for the QRS complex shape during steady-state free precession (SSFP) imaging at 1.5T (respectively, 3T). CONCLUSION: High-quality 12-lead ECG can be reconstructed by the proposed sensor network at 1.5T and 3T with reduced MHD artifacts compared to previous systems. The system might help improve patient monitoring and triggering and might also be of interest for interventional MRI and advanced cardiac MR applications.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/instrumentação , Eletrocardiografia/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Adulto , Artefatos , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Imagens de Fantasmas
5.
Ann Biomed Eng ; 47(4): 1141-1152, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30701395

RESUMO

Electrocardiogram (ECG) acquisition is required during catheter treatment of cardiac arrhythmias. The remote magnetic navigation technology allows the catheter to be moved automatically inside the heart chambers using large external magnets. Each change of position of the catheter requires fast motion of the magnets, therefore magnetic fluxes are created through the ECG cables, causing large distortions of the ECG signals. In this study a novel ECG sensor is proposed for reducing such distortions. The sensor uses short cables to connect the electrodes to the amplification and optical conversion circuit, using a technology similar to that used for magnetic resonance imaging. The proposed sensor was compared to the conventional 12-lead ECG device during various operation modes of the magnets. Quantitative morphological analysis of the different waves of the ECG was performed in two healthy subjects and on a conductivity phantom reproducing various cardiac pathologies. In healthy subjects the beat-to-beat correlation coefficients were improved with the proposed sensor for the PR interval (80-93% vs. 49-89%), QRS complex (93-96% vs. 74-94%), ST segment + T wave (95-98% vs. 67-99%), and whole PQRST wave (82-97% vs. 55-96%). Similar observations were made with the conductive gel in the whole PQRST wave in the pathological morphologies of the ECG for the VT (99% vs. 56-98%), AT (95% vs. 26-89%), STE (96-97% vs. 20-91%) and STD (96% vs. 28-90%). The new sensor might be used for better (uninterrupted) monitoring of the patient during catheter interventions using remote magnetic navigation. It has the potential to improve the robustness and/or duration of certain clinical procedures such as ventricular tachycardia ablation.


Assuntos
Arritmias Cardíacas , Cateterismo Cardíaco , Ablação por Cateter , Catéteres , Eletrocardiografia , Modelos Cardiovasculares , Adulto , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/cirurgia , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA