Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(16)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39047771

RESUMO

Objective.Accurate reference dosimetry with ionization chambers (ICs) relies on correcting for various influencing factors, including ion recombination. Theoretical frameworks, such as the Boag and Jaffe theories, are conventionally used to describe the ion recombination correction factors. Experimental methods are time consuming, the applicability may be limited and, in some cases, impractical to be used in clinical routine. The development of simulation tools becomes necessary to enhance the understanding of recombination under circumstances that may differ from conventional use. Before progressing, it is crucial to benchmark novel approaches to calculate ion recombination losses under known conditions. In this study, we introduce and validate a versatile simulation tool based on a Monte Carlo scheme for calculating initial and volume ion recombination correction factors in air-filled ICs exposed to ion beams with clinical dose rates.Approach. The simulation includes gaussian distribution of ion positions to model the distribution of charge carriers along the chamber volume. It accounts for various physical transport effects, including drift, diffusion, space charge screening and free electron fraction. To compute ion recombination, a Monte Carlo scheme is used due to its versatility in multiple geometries, without exhibiting convergence problems associated with numerically solved procedures.Main results. The code is validated in conventional dose rates against Jaffe's theory for initial recombination and Boag's theory for volume recombination based on parameters derived from experimental data including proton, helium and carbon ion beams measured with a plane parallel IC.Significance. The simulation demonstrates excellent agreement, typically 0.05% or less relative difference with the theoretical and experimental data. The current code successfully predicts ion recombination correction factors, in a large variety of ion beams, including different temporal beam structures.


Assuntos
Método de Monte Carlo , Radiometria , Radiometria/instrumentação , Íons
2.
Med Phys ; 51(7): 4982-4995, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742774

RESUMO

BACKGROUND: Proton arc therapy (PAT) has emerged as a promising approach for improving dose distribution, but also enabling simpler and faster treatment delivery in comparison to conventional proton treatments. However, the delivery speed achievable in proton arc relies on dedicated algorithms, which currently do not generate plans with a clear speed-up and sometimes even result in increased delivery time. PURPOSE: This study aims to address the challenge of minimizing delivery time through a hybrid method combining a fast geometry-based energy layer (EL) pre-selection with a dose-based EL filtering, and comparing its performance to a baseline approach without filtering. METHODS: Three methods of EL filtering were developed: unrestricted, switch-up (SU), and switch-up gap (SU gap) filtering. The unrestricted method filters the lowest weighted EL while the SU gap filtering removes the EL around a new SU to minimize the gantry rotation braking. The SU filtering removes the lowest weighted group of EL that includes a SU. These filters were combined with the RayStation dynamic proton arc optimization framework energy layer selection and spot assignment (ELSA). Four bilateral oropharyngeal and four lung cancer patients' data were used for evaluation. Objective function values, target coverage robustness, organ-at-risk doses and normal tissue complication probability evaluations, as well as comparisons to intensity-modulated proton therapy (IMPT) plans, were used to assess plan quality. RESULTS: The SU gap filtering algorithm performed best in five out of the eight cases, maintaining plan quality within tolerance while reducing beam delivery time, in particular for the oropharyngeal cohort. It achieved up to approximately 22% and 15% reduction in delivery time for oropharyngeal and lung treatment sites, respectively. The unrestricted filtering algorithm followed closely. In contrast, the SU filtering showed limited improvement, suppressing one or two SU without substantial delivery time shortening. Robust target coverage was kept within 1% of variation compared to the PAT baseline plan while organs-at-risk doses slightly decreased or kept about the same for all patients. CONCLUSIONS: This study provides insights to accelerate PAT delivery without compromising plan quality. These advancements could enhance treatment efficiency and patient throughput.


Assuntos
Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Órgãos em Risco/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Algoritmos , Neoplasias Orofaríngeas/radioterapia , Radioterapia de Intensidade Modulada/métodos
3.
Biomed Phys Eng Express ; 10(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38241732

RESUMO

Range uncertainties remain a limitation for the confined dose distribution that proton therapy can offer. The uncertainty stems from the ambiguity when translating CT Hounsfield Units (HU) into proton stopping powers. Proton Radiography (PR) can be used to verify the proton range. Specifically, PR can be used as a quality-control tool for CBCT-based synthetic CTs. An essential part of the work illustrating the potential of PR has been conducted using multi-layer ionization chamber (MLIC) detectors and mono-energetic PR. Due to the dimensions of commercially available MLICs, clinical adoption is cumbersome. Here, we present a simulation framework exploring locally-tuned single energy (LTSE) proton radiography and corresponding potential compact PR detector designs. Based on a planning CT data set, the presented framework models the water equivalent thickness. Subsequently, it analyses the proton energies required to pass through the geometry within a defined ROI. In the final step, an LTSE PR is simulated using the MCsquare Monte Carlo code. In an anatomical head phantom, we illustrate that LTSE PR allows for a significantly shorter longitudinal dimension of MLICs. We compared PR simulations for two exemplary 30 × 30 mm2proton fields passing the phantom at a 90° angle at an anterior and a posterior location in an iso-centric setup. The longitudinal distance over which all spots per field range out is significantly reduced for LTSE PR compared to mono-energetic PR. In addition, we illustrate the difference in shape of integral depth dose (IDD) when using constrained PR energies. Finally, we demonstrate the accordance of simulated and experimentally acquired IDDs for an LTSE PR acquisition. As the next steps, the framework will be used to investigate the sensitivity of LTSE PR to various sources of errors. Furthermore, we will use the framework to systematically explore the dimensions of an optimized MLIC design for daily clinical use.


Assuntos
Terapia com Prótons , Prótons , Radiografia , Simulação por Computador , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA