Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 8(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971967

RESUMO

Biodesulfurization processes remove toxic and corrosive hydrogen sulfide from gas streams (e.g., natural gas, biogas, or syngas). To improve the efficiency of these processes under haloalkaline conditions, a sulfate and thiosulfate reduction step can be included. The use of H2/CO mixtures (as in syngas) instead of pure H2 was tested to investigate the potential cost reduction of the electron donor required. Syngas is produced in the gas-reforming process and consists mainly of H2, carbon monoxide (CO), and carbon dioxide (CO2). Purification of syngas to obtain pure H2 implies higher costs because of additional post-treatment. Therefore, the use of syngas has merit in the biodesulfurization process. Initially, CO inhibited hydrogen-dependent sulfate reduction. However, after 30 days the biomass was adapted and both H2 and CO were used as electron donors. First, formate was produced, followed by sulfate and thiosulfate reduction, and later in the reactor run acetate and methane were detected. Sulfide production rates with sulfate and thiosulfate after adaptation were comparable with previously described rates with only hydrogen. The addition of CO marginally affected the microbial community in which Tindallia sp. was dominant. Over time, acetate production increased and acetogenesis became the dominant process in the bioreactor. Around 50% of H2/CO was converted to acetate. Acetate supported biomass growth and higher biomass concentrations were reached compared to bioreactors without CO feed. Finally, CO addition resulted in the formation of small, compact microbial aggregates. This suggests that CO or syngas can be used to stimulate aggregation in haloalkaline biodesulfurization systems.

2.
Sci Total Environ ; 745: 141017, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32736107

RESUMO

Biological sulfate and thiosulfate reduction under haloalkaline conditions can be applied to treat waste streams from biodesulfurization systems. However, the lack of microbial aggregation under haloalkaline conditions limits the volumetric rates of sulfate and thiosulfate reducing bioreactors. As biomass retention in haloalkaline bioreactors has not been studied before, sand was chosen as a biomass carrier material to increase cell retention and consequently raise the volumetric rates. The results showed that ~10 fold higher biomass concentrations could be achieved with sand, compared to previous studies without carrier addition. The volumetric rates of sulfate/thiosulfate reduction increased approximately 4.5 times. Biomass attachment to the sand was restricted to cavities within the sand particles. Acetate produced by acetogenic bacteria from H2 and CO2 was used as carbon source for biomass growth, while formate that was also produced from H2 and CO2 enhanced sulfate reduction. The microbial community composition was analyzed by 16S rRNA gene amplicon sequencing, and Tindallia related bacteria were probably responsible for formate formation from hydrogen. The community attached to the sand particles was similar to the suspended fraction, but the relative abundance of sequences most closely related to Desulfohalobiaceae was much higher in the attached fraction compared to the suspended fraction (30% and 13%, respectively). The results indicated that even though the biomass attachment to sand was poor, it still increased the biomass concentration and consequently the sulfate and thiosulfate reduction volumetric rates.


Assuntos
Areia , Tiossulfatos , Biomassa , Reatores Biológicos , Oxirredução , RNA Ribossômico 16S , Sulfatos
3.
Environ Sci Technol ; 51(2): 914-923, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27997142

RESUMO

In industrial gas biodesulfurization systems, where haloalkaline conditions prevail, a thiosulfate containing bleed stream is produced. This bleed stream can be treated in a separate bioreactor by reducing thiosulfate to sulfide and recycling it. By performing treatment and recycling of the bleed stream, its disposal decreases and less caustics are required to maintain the high pH. In this study, anaerobic microbial thiosulfate conversion to sulfide in a H2/CO2 fed bioreactor operated at haloalkaline conditions was investigated. Thiosulfate was converted by reduction to sulfide as well as disproportionation to sulfide and sulfate. Formate production from H2/CO2 was observed as an important reaction in the bioreactor. Formate, rather than H2, might have been used as the main electron donor by thiosulfate/sulfate-reducing bacteria. The microbial community was dominated by bacteria belonging to the family Clostridiaceae most closely related to Tindallia texcoconensis. Bacteria phylogenetically related to known haloalkaline sulfate and thiosulfate reducers, thiosulfate-disproportionating bacteria, and remarkably sulfur-oxidizing bacteria were also detected. On the basis of the results, two approaches to treat the biodesulfurization waste stream are proposed: (i) addition of electron donor to reduce thiosulfate to sulfide and (ii) thiosulfate disproportionation without the need for an electron donor. The concept of application of solely thiosulfate disproportionation is discussed.


Assuntos
Reatores Biológicos/microbiologia , Tiossulfatos , Bactérias , Oxirredução , Sulfatos , Sulfetos
4.
Environ Sci Technol ; 50(23): 12808-12815, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934286

RESUMO

After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.


Assuntos
RNA Ribossômico 16S , Sulfetos , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/química , Compostos de Sulfidrila/química
5.
Appl Microbiol Biotechnol ; 99(22): 9331-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26359181

RESUMO

Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.


Assuntos
Bactérias Anaeróbias/metabolismo , Lagos/microbiologia , Methanomicrobiaceae/metabolismo , Consórcios Microbianos/fisiologia , Salinidade , Microbiologia da Água , Amônia/toxicidade , Anaerobiose , Archaea/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Metano/metabolismo , Enxofre/metabolismo , Enxofre/toxicidade
6.
Water Res ; 68: 67-76, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25462717

RESUMO

Biological sulfate reduction is used as a biotechnological process to treat sulfate rich streams. However, application of biological sulfate reduction at high pH and high salinity using H2 was not thoroughly investigated before. In this work the sulfate reduction activity, biomass growth, microbial community and biomass aggregation were investigated in a H2-fed gas lift bioreactor at haloalkaline conditions. The process was characterized by low sulfate reduction volumetric rates due to slow growth and lack of biomass aggregation. Apparently, the extreme conditions and absence of organic compounds prevented the formation of stable aggregates. The microbial community analysis revealed a low abundance of known haloalkaliphilic sulfate reducers and presence of a Tindallia sp. The identified archaea were related to Methanobacterium alcaliphilum and Methanocalculus sp. The biomass did not attach to metal sulfides, calcite and magnesite crystals. However, biofilm formation on the glass bioreactor walls showed that attachment to glass occurs.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Hidrogênio/análise , Sulfatos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Archaea/genética , Bactérias/genética , Reatores Biológicos/microbiologia , DNA Arqueal/genética , DNA Arqueal/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA