RESUMO
In the last 10,000 years, wheat has become one of the most important cereals in the human diet and today, it is widely consumed in many processed food products. Mostly considered a source of energy, wheat also contains other essential nutrients, including fiber, proteins, and minor components, such as phytochemicals, vitamins, lipids, and minerals, that together promote a healthy diet. Apart from its nutritional properties, wheat has a set of proteins, the gluten, which confer key technical properties, but also trigger severe immune-mediated diseases, such as celiac disease. We are currently witnessing a rise in the number of people adhering to gluten-free diets unwarranted by any medical need. In this dynamic context, this review aims to critically discuss the nutritional components of wheat, highlighting both the health benefits and wheat/gluten-related disorders, in order to address common misconceptions associated with wheat consumption.
RESUMO
Polyphenols have been extensively studied due to their beneficial effects on human health, particularly for the prevention and treatment of diseases related to oxidative stress. Nevertheless, they are also known to have an anti-nutritional effect in relation to protein metabolism. This effect is a consequence of its binding to digestive enzymes and/or protein substrates. Dietary gluten is the main trigger of celiac disease, a common immune-based disease of the small intestine and for which the only treatment available is the adherence to a gluten-free diet. Recent studies have addressed the use of dietary polyphenols to interact with gluten proteins and avoid its downstream deleterious effects, taking the advantage of the anti-nutritive nature of polyphenols by protein sequestering. Flavonoids, coumarins and tannins have shown the ability to form insoluble complexes with gluten proteins. One of the most promising molecules has been epigallocatechin-3-gallate, which through its binding to gliadins, was able to reduce gliadins digestibility and its ability to stimulate monolayer permeability and transepithelial transport of immunodominant peptides in cell models. This review focuses on the structural features and binding capacity of polyphenols to gluten proteins and peptides, and the prospects of developing an adjuvant therapy in celiac disease.
RESUMO
Vancomycin-resistant enterococci (VRE), due to their intrinsic resistance to various commonly used antibiotics and their malleable genome, make the treatment of infections caused by these bacteria less effective. The aims of this work were to characterize isolates of Enterococcus spp. that originated from processed meat, through phenotypic and genotypic techniques, as well as to detect putative antibiotic resistance biomarkers. The 19 VRE identified had high resistance to teicoplanin (89%), tetracycline (94%), and erythromycin (84%) and a low resistance to kanamycin (11%), gentamicin (11%), and streptomycin (5%). Based on a Next-Generation Sequencing NGS technique, most isolates were vanA-positive. The most prevalent resistance genes detected were erm(B) and aac(6')-Ii, conferring resistance to the classes of macrolides and aminoglycosides, respectively. MALDI-TOF mass spectrometry (MS) analysis detected an exclusive peak of the Enterococcus genus at m/z (mass-to-charge-ratio) 4428 ± 3, and a peak at m/z 6048 ± 1 allowed us to distinguish Enterococcus faecium from the other species. Several statistically significant protein masses associated with resistance were detected, such as peaks at m/z 6358.27 and m/z 13237.3 in ciprofloxacin resistance isolates. These results reinforce the relevance of the combined and complementary NGS and MALDI-TOF MS techniques for bacterial characterization.
RESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) are one of the main pathogens associated with purulent infections. MRSA clonal complex 97 (CC97) has been identified in a wide diversity of livestock animals. Therefore, we aimed to investigate the antibiotic resistance profiles of MRSA strains isolated from purulent lesions of food-producing rabbits. Samples from purulent lesions of 66 rabbits were collected in a slaughterhouse in Portugal. Samples were seeded onto ORSAB plates with 2 mg/L of oxacillin for MRSA isolation. Susceptibility to antibiotics was tested by the disk diffusion method against 14 antimicrobial agents. The presence of resistance genes, virulence factors and the immune evasion cluster (IEC) system was studied by polymerase chain reaction. All isolates were characterized by multilocus sequence typing (MLST), agr and spa typing. From the 66 samples analyzed, 16 (24.2%) MRSA were detected. All strains were classified as multidrug-resistant as they were resistant to at least three classes of antibiotics. All isolates showed resistance to penicillin, erythromycin and clindamycin. Seven isolates were resistant to gentamicin and harbored the aac(6')-Ie-aph (2'')-Ia gene. Resistance to tetracycline was detected in 10 isolates harboring the tet(K) gene. The IEC genes were detected in three isolates. MRSA strains belonged to CC97, CC1, CC5, CC15 or CC22. The isolates were assigned to six different spa types. In this study we found a moderate prevalence of multidrug-resistant MRSA strains in food-producing rabbits. This may represent concern for food safety and public health, since cross-contamination may occur, leading to the spread of MRSA and, eventually, the possibility of ingestion of contaminated meat.
RESUMO
The commensal bacteria Escherichia coli causes several intestinal and extra-intestinal diseases, since it has virulence factors that interfere in important cellular processes. These bacteria also have a great capacity to spread the resistance genes, sometimes to phylogenetically distant bacteria, which poses an additional threat to public health worldwide. Here, we aimed to use the analytical potential of MALDI-TOF mass spectrometry (MS) to characterize E. coli isolates and identify proteins associated closely with antibiotic resistance. Thirty strains of extended-spectrum beta-lactamase producing E. coli were sampled from various animals. The phenotypes of antibiotic resistance were determined according to Clinical and Laboratory Standards Institute (CLSI) methods, and they showed that all bacterial isolates were multi-resistant to trimethoprim-sulfamethoxazole, tetracycline, and ampicillin. To identify peptides characteristic of resistance to particular antibiotics, each strain was grown in the presence or absence of the different antibiotics, and then proteins were extracted from the cells. The protein fingerprints of the samples were determined by MALDI-TOF MS in linear mode over a mass range of 2 to 20 kDa. The spectra obtained were compared by using the ClinProTools bioinformatics software, using three machine learning classification algorithms. A putative species biomarker was also detected at a peak m/z of 4528.00.