Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 83(7): 1623-1640, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35989498

RESUMO

The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Triterpenos Pentacíclicos , Humanos , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Interleucina-6 , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
2.
J Mol Cell Biol ; 14(4)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35451490

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Assuntos
COVID-19 , SARS-CoV-2 , Síndrome da Liberação de Citocina , Humanos , Leucócitos Mononucleares , Monócitos
3.
Front Neurosci ; 15: 674576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887719

RESUMO

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.

4.
J Med Virol ; 93(11): 6132-6139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34050944

RESUMO

Cholesteatomas are frequent middle ear benign tumors of unknown etiology. Infectious agents have been considered as possible contributing factors in the pathogenesis of cholesteatomas. Aiming to investigate the presence of respiratory viruses in primary cholesteatoma tissues, 26 formalin-fixed paraffin-embedded primary cholesteatoma tissues obtained from patients seen at the of the Clinical Hospital of the University of São Paulo School of Medicine, in Ribeirão Preto, Brazil were tested by real-time polymerase chain reaction (PCR). Considering the PCR results, 35% of the tissues were positive for human rhinovirus (HRV), 15.3% for human enterovirus (EV), 3.8% for human metapneumovirus (HMPV), and 3.8% for human bocavirus (HBoV). Serial immunohistochemistry for virus antigens and cell surface markers evidenced that the viruses were associated with fibroblasts, dendritic cells, macrophages, B lymphocytes, CD4+ , and CD8+ T lymphocytes. These findings indicate for the first time the presence of active respiratory virus infection in primary cholesteatoma tissues, suggesting that persisting virus infection in the middle could play a role in the pathogenesis and evolution of cholesteatomas.


Assuntos
Colesteatoma/virologia , Enterovirus/isolamento & purificação , Bocavirus Humano/isolamento & purificação , Metapneumovirus/isolamento & purificação , Rhinovirus/isolamento & purificação , Adolescente , Adulto , Idoso , Brasil , Colesteatoma/patologia , Estudos Transversais , Enterovirus/genética , Feminino , Bocavirus Humano/genética , Humanos , Masculino , Metapneumovirus/genética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Rhinovirus/genética , Adulto Jovem
5.
Braz J Microbiol ; 52(2): 531-539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33788178

RESUMO

Accurate testing to detect SARS-CoV-2 RNA is key to counteract the virus spread. Nonetheless, the number of diagnostic laboratories able to perform qPCR tests is limited, particularly in developing countries. We describe the use of a virus-inactivating, denaturing solution (DS) to decrease virus infectivity in clinical specimens without affecting RNA integrity. Swab samples were collected from infected patients and from laboratory personnel using a commercially available viral transport solution and the in-house DS. Samples were tested by RT-qPCR, and exposure to infective viruses was also accessed by ELISA. The DS used did not interfere with viral genome detection and was able to maintain RNA integrity for up to 16 days at room temperature. Furthermore, virus loaded onto DS were inactivated, as attested by attempts to grow SARS-CoV-2 in cell monolayers after DS desalt filtration to remove toxic residues. The DS described here provides a strategy to maintain diagnostic accuracy and protects diagnostic laboratory personnel from accidental infection, as it has helped to protect our lab crew.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Estabilidade de RNA/efeitos dos fármacos , RNA Viral/análise , SARS-CoV-2/genética , Manejo de Espécimes/métodos , Testes Diagnósticos de Rotina , Genoma Viral/genética , Humanos , Desnaturação Proteica/efeitos dos fármacos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/efeitos dos fármacos
6.
bioRxiv ; 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34013264

RESUMO

Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo . We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4 + T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA