Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Wildl Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717873

RESUMO

We evaluated antibodies against Leptospira spp. in both free-living and captive Caiman latirostris from Atlantic Forest, and free-living Caiman yacare from Pantanal, Brazil, by using a microscopic agglutination test. Overall seropositivity was 17%, with rates of 36% in captive C. latirostris (n=4/11) and 18% in free-living C. yacare (n=4/22).

2.
Sci Total Environ ; 903: 166835, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678531

RESUMO

Although hydrochar and biochar have been used as soil conditioners, there is not a clear understanding of how their properties changes due to aging impacts their colloidal particles behavior on the soil system. From this premise, we produced hydrochar and biochar from the same feedstock (cashew bagasse) and aged with different chemical methods: (i) using hydrogen peroxide, (ii) a mixture of nitric and sulfuric acids, and (iii) hot water. It was analyzed the effects of aging on the stability of the carbonaceous materials (CMs) colloids in aqueous medium with different ionic strength (single systems), as well as the stability of the natural-soil colloid when interacting with biochar and hydrochar colloids (binary systems). A chemical composition (C, H, N, and O content) change in CMs due to the chemically induced aging was observed along with minor structural modifications. Chemical aging could increase the amount of oxygen functional groups for both biochar and hydrochar, though in a different level depending on the methodology applied. In this sense, hydrochar was more susceptive to chemical oxidation than biochar. The effectiveness of chemical aging treatments for biochar increased in the order of water < acid < hydrogen peroxide, whereas for hydrochar the order was water < hydrogen peroxide < acid. While the increase in surface oxidation improved the biochar colloidal stability in water medium at different ionic strengths (single systems), the stability and critical coagulation concentration (CCC) slightly changed for hydrochar. Natural-soil clay (NSC) interactions with oxidized carbonaceous material colloids (binary systems) enhanced NSC stability, which is less likely to aggregate. Therefore, the aging of carbonaceous materials modifies the interaction and dynamics of soil small particles, requiring far more attention to the environmental risks due to their application over time.

3.
Mol Ther Methods Clin Dev ; 30: 194-207, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37502665

RESUMO

Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.

4.
Materials (Basel) ; 16(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048884

RESUMO

Among the most studied semiconducting transition metal dichalcogenides (TMDCs), WS2 showed several advantages in comparison to their counterparts, such as a higher quantum yield, which is an important feature for quantum emission and lasing purposes. We studied transferred monolayers of WS2 on a drilled Si3N4 substrate in order to have insights about on how such heterostructure behaves from the Raman and photoluminescence (PL) measurements point of view. Our experimental findings showed that the Si3N4 substrate influences the optical properties of single-layer WS2. Beyond that, seeking to shed light on the causes of the PL quenching observed experimentally, we developed density functional theory (DFT) based calculations to study the thermodynamic stability of the heterojunction through quantum molecular dynamics (QMD) simulations as well as the electronic alignment of the energy levels in both materials. Our analysis showed that along with strain, a charge transfer mechanism plays an important role for the PL decrease.

5.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877273

RESUMO

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Solo , Nanopartículas Magnéticas de Óxido de Ferro , Água
6.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985605

RESUMO

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Assuntos
Annonaceae , Guatteria , Óleos Voláteis , Xylopia , Annonaceae/química , Xylopia/química , Guatteria/química , Óleos Voláteis/química , Brasil , Simulação de Acoplamento Molecular , Folhas de Planta/química
7.
Microsc Res Tech ; 86(6): 636-647, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36951250

RESUMO

In this study, the toxicity effects of titanium dioxide (MTiO2 ) microparticles on Artemia sp. nauplii instar I and II between 24 and 48 h was evaluated. The MTiO2 were characterized using different microscopy techniques. MTiO2 rutile was used in toxicity tests at concentration of 12.5, 25, 50, and 100 ppm. No toxicity was observed in Artemia sp. nauplii instar I at the time of 24 and 48 h. However, Artemia sp. nauplii instar II toxicity was observed within 48 h of exposure. MTiO2 at concentrations of 25, 50 and 100 ppm was lethal for Artemia sp. with a significant difference (p ≤ .05) in relation to the control artificial sea water with LC50 value at 50 ppm. Analysis of optical and scanning electron microscopy revealed tissue damage and morphological changes in Artemia sp. nauplii instar II. By using confocal laser scanning microscopy, cell damage was observed due to the toxicity of MTiO2 at a concentration of 20, 50, and 100 ppm. The high mortality rate is related to the filtration of MTiO2 by Artemia sp. nauplii instar II due to the complete development of the digestive tract.


Assuntos
Artemia , Titânio , Animais , Titânio/toxicidade , Testes de Toxicidade
8.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897853

RESUMO

The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by ß-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B's EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs' antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor-ligand complex.


Assuntos
Herbicidas , Myrtaceae , Óleos Voláteis , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Myrtaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
9.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897944

RESUMO

In this paper, we evaluated the drug-receptor interactions responsible for the antimicrobial activity of thymol, the major compound present in the essential oil (EO) of Lippia thymoides (L. thymoides) Mart. & Schauer (Verbenaceae). It was previously reported that this EO exhibits antimicrobial activity against Candida albicans (C. albicans), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). Therefore, we used molecular docking, molecular dynamics simulations, and free energy calculations to investigate the interaction of thymol with pharmacological receptors of interest to combat these pathogens. We found that thymol interacted favorably with the active sites of the microorganisms' molecular targets. MolDock Score results for systems formed with CYP51 (C. albicans), Dihydrofolate reductase (S. aureus), and Dihydropteroate synthase (E. coli) were -77.85, -67.53, and -60.88, respectively. Throughout the duration of the MD simulations, thymol continued interacting with the binding pocket of the molecular target of each microorganism. The van der Waals (ΔEvdW = -24.88, -26.44, -21.71 kcal/mol, respectively) and electrostatic interaction energies (ΔEele = -3.94, -11.07, -12.43 kcal/mol, respectively) and the nonpolar solvation energies (ΔGNP = -3.37, -3.25, -2.93 kcal/mol, respectively) were mainly responsible for the formation of complexes with CYP51 (C. albicans), Dihydrofolate reductase (S. aureus), and Dihydropteroate synthase (E. coli).


Assuntos
Anti-Infecciosos , Proteínas de Escherichia coli , Lippia , Óleos Voláteis , Verbenaceae , Anti-Infecciosos/farmacologia , Candida albicans , Carbono-Oxigênio Ligases , Di-Hidropteroato Sintase , Escherichia coli , Lippia/química , Simulação de Acoplamento Molecular , Monoterpenos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Staphylococcus aureus , Tetra-Hidrofolato Desidrogenase , Timol/química , Timol/farmacologia
10.
J Neurochem ; 163(2): 113-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880385

RESUMO

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Assuntos
COVID-19 , Animais , Astrócitos , Carbono , Cricetinae , Modelos Animais de Doenças , Glucose , Glutamina , Ácidos Cetoglutáricos , Mesocricetus , Piruvatos , SARS-CoV-2
11.
Sci Rep ; 12(1): 3890, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273234

RESUMO

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.


Assuntos
COVID-19/terapia , Imunoglobulinas/uso terapêutico , Receptores Imunológicos/uso terapêutico , SARS-CoV-2/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Cavalos/imunologia , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/isolamento & purificação , Masculino , Mesocricetus/imunologia , Plasmaferese/veterinária , Receptores Imunológicos/imunologia
12.
Funct Plant Biol ; 48(11): 1113-1123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34585660

RESUMO

Silver nanoparticle (AgNPs) toxicity is related to nanoparticle interaction with the cell wall of microorganisms and plants. This interaction alters cell wall conformation with increased reactive oxygen species (ROS) in the cell. With the increase of ROS in the cell, the dissolution of zero silver (Ag0) to ionic silver (Ag+) occurs, which is a strong oxidant agent to the cellular wall. AgNP interaction was evaluated by transmission electron microscopy (TEM) on Lactuca sativa roots, and the mechanism of passage through the outer cell wall (OCW) was also proposed. The results suggest that Ag+ binds to the hydroxyls (OH) present in the cellulose structure, thus causing the breakdown of the hydrogen bonds. Changes in cell wall structure facilitate the passage of AgNPs, reaching the plasma membrane. According to the literature, silver nanoparticles with an average diameter of 15nm are transported across the membrane into the cells by caveolines. This work describes the interaction between AgNPs and the cell wall and proposes a transport model through the outer cell wall.


Assuntos
Asteraceae , Nanopartículas Metálicas , Parede Celular , Lactuca , Nanopartículas Metálicas/toxicidade , Prata
13.
An Acad Bras Cienc ; 93(4): e29290261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495201

RESUMO

Public universities, and science in general, in Brazil, are under attack from key persons of the government in interviews and articles published in non-scientific journals. Here we look at bibliography data from international science metric platforms (Scival® and Incites®) and official Brazilian agencies such as CAPES and CNPq to reach some conclusions based on scientific analysis. Brazilian Science has shown a steady improvement in quantity and quality over the last 20 years but has recently suffered (since 2015) under severe financial restrictions. An increase in international collaboration also increased citation impact, reaching almost five times the world average. While the medical and natural sciences show the highest impact and prominence, social sciences and the humanities also have spotlight areas with international excellence. Different research institutions and universities offer a variety of production profiles and impacts. This diagnosis shows the need for universities and research institutes in Brazil and funding agencies to undergo strategic planning for definition of mission/vision, goals to be reached, and areas for priority development. Continued support of public universities by the government is necessary for Brazilian autonomy in science and technology and its full integration in the world scientific community.


Assuntos
Publicações , Universidades , Brasil
14.
Braz J Microbiol ; 52(4): 2431-2438, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34424509

RESUMO

The present study investigated the serum microscopic agglutination test (MAT) among 203 bovine bulls with reproduction by natural means, without apparent signs of orchitis or inflammation of accessory reproductive glands. Simultaneously, the semen of all bulls was subjected to sperm viability analysis and PCR based on the 16S rRNA gene. PCR-positive results of semen samples were confirmed by sequencing. A modified seminal plasma agglutination (MSPA) test, replacing the blood serum of all bulls in the MAT with seminal plasma was performed as well. Eight (8/203 = 3.9%) semen samples from bulls were considered nonviable (necrospermia and azoospermia) without relation to the PCR diagnosis. No agglutinin titers were identified in MSPA test. A high frequency (132/203 = 65%) of leptospiral agglutinin titers was identified in the MAT, particularly for the Sejroe serogroup (Hardjo CTG, 100/203 = 49.3%; Wolffi 74/203 = 36.4%; Guaricura 72/203 = 35.5%; and Hardjoprajitno 56/203 = 27.6%). Three (3/203 = 1.5%) semen samples of bulls were positive in the PCR, but these results were not confirmed by sequencing. The high frequency of serovars from the Sejroe serogroup typically adapted to bovines indicates the need for measures for the prophylaxis/control of the pathogen on the sampled farms. Discrepancies among the MAT, sperm viability, and molecular detection of leptospires in semen highlight the need for a combination of methods to diagnose leptospirosis in bovine bulls. To our knowledge, modified seminal plasma agglutination is described for the first time here to investigate anti-Leptospira antibodies produced locally in the genital tract in the diagnosis of bovine leptospirosis among bulls that reproduce by natural means.


Assuntos
Leptospira , Leptospirose , Sêmen/microbiologia , Soro/microbiologia , Testes de Aglutinação , Animais , Bovinos/microbiologia , Leptospira/genética , Leptospirose/diagnóstico , Leptospirose/veterinária , Masculino , RNA Ribossômico 16S , Espermatozoides
15.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200300

RESUMO

Propolis is a balsamic product obtained from vegetable resins by exotic Africanized bees Apis mellifera L., transported and processed by them, originating from the activity that explores and maintains these individuals. Because of its vegetable and natural origins, propolis is a complex mixture of different compound classes; among them are the volatile compounds present in the aroma. In this sense, in the present study we evaluated the volatile fraction of propolis present in the aroma obtained by distillation and simultaneous extraction, and its chemical composition was determined using coupled gas chromatography, mass spectrometry, and flame ionization detection. The majority of compounds were sesquiterpene and hydrocarbons, comprising 8.2-22.19% α-copaene and 6.2-21.7% ß-caryophyllene, with additional compounds identified in greater concentrations. Multivariate analysis showed that samples collected from one region may have different chemical compositions, which may be related to the location of the resin's production. This may be related to other bee products.


Assuntos
Abelhas/química , Própole/química , Compostos Orgânicos Voláteis/química , Animais , Brasil , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos/química , Sesquiterpenos Policíclicos/química , Resinas Vegetais/química , Sesquiterpenos/química
16.
BMC Microbiol ; 21(1): 99, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789603

RESUMO

BACKGROUND: Leptospirosis is a zoonotic disease caused by infection with spirochetes from Leptospira genus. It has been classified into at least 17 pathogenic species, with more than 250 serologic variants. This wide distribution may be a result of leptospiral ability to colonize the renal tubules of mammalian hosts, including humans, wildlife, and many domesticated animals. Previous studies showed that the expression of proteins belonging to the microbial heat shock protein (HSP) family is upregulated during infection and also during various stress stimuli. Several proteins of this family are known to have important roles in the infectious processes in other bacteria, but the role of HSPs in Leptospira spp. is poorly understood. In this study, we have evaluated the capacity of the protein GroEL, a member of HSP family, of interacting with host proteins and of stimulating the production of cytokines by macrophages. RESULTS: The binding experiments demonstrated that the recombinant GroEL protein showed interaction with several host components in a dose-dependent manner. It was also observed that GroEL is a surface protein, and it is secreted extracellularly. Moreover, two cytokines (tumor necrosis factor-α and interleukin-6) were produced when macrophages cells were stimulated with this protein. CONCLUSIONS: Our findings showed that GroEL protein may contribute to the adhesion of leptospires to host tissues and stimulate the production of proinflammatory cytokines during infection. These features might indicate an important role of GroEL in the pathogen-host interaction in the leptospirosis.


Assuntos
Chaperonina 60/imunologia , Citocinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leptospira/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia
17.
ACS Nano ; 15(5): 8574-8582, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33900719

RESUMO

In this work, we explain the origin and the mechanism responsible for the strong enhancement of the Raman signal of sulfur chains encapsulated by single-wall carbon nanotubes by running resonance Raman measurements in a wide range of excitation energies for two nanotube samples with different diameter distributions. The Raman signal associated with the vibrational modes of the sulfur chain is observed when it is confined by small-diameter metallic nanotubes. Moreover, a strong enhancement of the Raman signal is observed for excitation energies corresponding to the formation of excited nanotube-chain-hybrid electronic states. Our hypothesis was further tested by high pressure Raman measurements and confirmed by density functional theory calculations of the electronic density of states of hybrid systems formed by sulfur chains encapsulated by different types of single-wall carbon nanotubes.

18.
Front Vet Sci ; 8: 654034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748224

RESUMO

The microscopic agglutination test (MAT) used for the serological diagnosis of leptospirosis, as a robust and inexpensive method, is still the reality in many laboratories worldwide. Both the performance and the interpretation of the MAT vary from region to region, making standardization difficult. The prediction of the probable infecting serogroup using this test is indispensable for elucidating the epidemiology of the disease; however, in veterinary medicine, many studies consider any reaction detected with a titer of 100, which may ultimately overestimate some serogroups. Thus, the aim of this study was to evaluate the usefulness of the ranking technique for predicting the probable infecting serogroup identified by the MAT, eliminating cross reactions with other serogroups. Leptospira strains (12 samples) were inoculated in hamsters, and after 30 days, serology was performed by the MAT for these animals to confirm the infecting serogroup. Using the ranking technique, the probable infectious serogroup found with the MAT was the same as that in which the strains of inoculated leptospires belonged; additionally, the technique can be applied in epidemiological studies involving herds.

19.
Trop Anim Health Prod ; 53(2): 194, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666800

RESUMO

At present, little is known regarding the prevalence of buffalo leptospirosis worldwide, especially with respect to which Leptospira strains may infect this animal species. Furthermore, most investigations into this disease in buffaloes have only been performed with serological studies. In Brazil, particularly in the Amazon, buffalo production is growing and is just as important as cattle production, although few studies have been performed on buffalo compared to cattle. Thus, the aim of this study was to isolate and characterise Leptospira strains from river buffaloes raised in the Brazilian Amazon region. We collected 109 kidney samples from slaughtered buffaloes raised in the Amazon Delta region of Brazil. The samples were analysed by bacteriological culture for the isolation of leptospires, and the obtained isolates were serologically and molecularly characterised by microscopic agglutination test (MAT), DNA sequencing and multiple locus variable-number tandem repeat analysis (MLVA). Five isolates were obtained, and in serogrouping analyses, these isolates were only reactive for the Pomona serogroup, with an observed titre of 25,600. The DNA sequencing results revealed that all the isolates belonged to the species Leptospira interrogans, and the MLVA results showed that the VNTR loci 4, 7 and 10 profile of all the isolates was 4-1-10. In this study, we observed that Pomona serogroup strains circulate in buffaloes in the Amazon, showing that in Brazil, buffaloes can be affected by Leptospira strains other than the Sejroe group, which are adapted to cattle.


Assuntos
Búfalos/microbiologia , Leptospira interrogans/classificação , Leptospira interrogans/isolamento & purificação , Leptospirose/veterinária , Rios , Animais , Brasil/epidemiologia , Feminino , Leptospira interrogans/genética , Leptospirose/epidemiologia , Masculino
20.
Comp Immunol Microbiol Infect Dis ; 74: 101579, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246243

RESUMO

In Brazil, there have been few leptospires isolated from cattle, especially in the Amazon, implying that the epidemiology of the disease in this region is still largely unclear. In a previous study, 52 Leptospira isolates were obtained from urine of cattle raised in the Brazilian Amazon and, to achieve a greater understanding of Leptospira infection in cattle of this region, the present study aimed to serologically and molecularly characterizes all these isolates. The laboratory assays used were the microscopic agglutination test (MAT) adopting a panel of polyclonal antisera against Leptospira spp. for serogrouping the isolates, DNA sequencing (secY) and multiple locus variable number tandem repeat analysis (MLVA). The isolates belonged to five species: 20/52 were identified as L. borgpetersenii (38.5 %); 18/52 as L. kirschneri (34.6 %); 9/52 as L. santarosai (17.3 %); 3/52 as L. noguchii (5.8 %) and 2/52 as L. interrogans (3.8 %). With serogrouping, nine different serogroups were detected, with a high frequency of the Sejroe serogroup. MLVA showed that all L. borgpetersenii isolates had a profile compatible with serovar Hardjo; moreover, the other isolates demonstrated a diversity of patterns, and some of them may represent strains not yet characterized. In the Brazilian Amazon, the leptospires circulating in cattle revealed the unique aspects of infections in this area which, in addition to a variety of strains, were characterized by a high frequency of the Sejroe serogroup, highlighting the serovar Hardjo, which has not been reported in other regions of Brazil.


Assuntos
Doenças dos Bovinos , Leptospira , Leptospirose , Animais , Brasil/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Leptospira/genética , Leptospirose/epidemiologia , Leptospirose/veterinária , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA