Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 617(7959): 100-104, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095266

RESUMO

During the last ice age, the Laurentide Ice Sheet exhibited extreme iceberg discharge events that are recorded in North Atlantic sediments1. These Heinrich events have far-reaching climate impacts, including widespread disruptions to hydrological and biogeochemical cycles2-4. They occurred during Heinrich stadials-cold periods with strongly weakened Atlantic overturning circulation5-7. Heinrich-type variability is not distinctive in Greenland water isotope ratios, a well-dated site temperature proxy8, complicating efforts to assess their regional climate impact and phasing against Antarctic climate change. Here we show that Heinrich events have no detectable temperature impact on Greenland and cooling occurs at the onset of several Heinrich stadials, and that both types of Heinrich variability have a distinct imprint on Antarctic climate. Antarctic ice cores show accelerated warming that is synchronous with increases in methane during Heinrich events, suggesting an atmospheric teleconnection9, despite the absence of a Greenland climate signal. Greenland ice-core nitrogen stable isotope ratios, a sensitive temperature proxy, indicate an abrupt cooling of about three degrees Celsius at the onset of Heinrich Stadial 1 (17.8 thousand years before present, where present is defined as 1950). Antarctic warming lags this cooling by 133 ± 93 years, consistent with an oceanic teleconnection. Paradoxically, proximal sites are less affected by Heinrich events than remote sites, suggesting spatially complex event dynamics.

2.
Science ; 372(6546): 1097-1101, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083489

RESUMO

Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.

3.
Nat Commun ; 10(1): 4494, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582753

RESUMO

Accurate estimates of the past extent of the Greenland ice sheet provide critical constraints for ice sheet models used to determine Greenland's response to climate forcing and contribution to global sea level. Here we use a continuous ice core dust record from the Renland ice cap on the east coast of Greenland to constrain the timing of changes to the ice sheet margin and relative sea level over the last glacial cycle. During the Holocene and the previous interglacial period (Eemian) the dust record was dominated by coarse particles consistent with rock samples from central East Greenland. From the coarse particle concentration record we infer the East Greenland ice sheet margin advanced from 113.4 ± 0.4 to 111.0 ± 0.4 ka BP during the glacial onset and retreated from 12.1 ± 0.1 to 9.0 ± 0.1 ka BP during the last deglaciation. These findings constrain the possible response of the Greenland ice sheet to climate forcings.

4.
Proc Natl Acad Sci U S A ; 112(20): 6325-30, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941400

RESUMO

High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼ 1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad-the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.


Assuntos
Indústrias Extrativas e de Processamento/métodos , Água Subterrânea/química , Gás Natural/efeitos adversos , Movimentos da Água , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Cromatografia Gasosa-Espectrometria de Massas , Fenômenos Geológicos , Pennsylvania
5.
Nature ; 514(7524): 616-9, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355363

RESUMO

Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles. The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination (23,000 to 9,000 years ago), however, remains uncertain. Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination, given the strong covariance of CO2 levels and Antarctic temperatures. Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.


Assuntos
Ciclo do Carbono , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Efeito Estufa , Groenlândia , História Antiga , Camada de Gelo , Isótopos , Metano/análise , Oceanos e Mares , Água/análise , Água/química
6.
FEMS Microbiol Ecol ; 89(2): 238-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24450335

RESUMO

Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice.


Assuntos
Actinobacteria/genética , Ascomicetos/genética , Basidiomycota/genética , Camada de Gelo/microbiologia , Proteobactérias/genética , Actinobacteria/isolamento & purificação , Ascomicetos/isolamento & purificação , Basidiomycota/isolamento & purificação , Biodiversidade , Contaminação por DNA , Microbiologia Ambiental , Genes Bacterianos , Genes Fúngicos , Groenlândia , Gelo , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
7.
Science ; 342(6161): 964-6, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24264988

RESUMO

The origin of the late preindustrial Holocene (LPIH) increase in atmospheric methane concentrations has been much debated. Hypotheses invoking changes in solely anthropogenic sources or solely natural sources have been proposed to explain the increase in concentrations. Here two high-resolution, high-precision ice core methane concentration records from Greenland and Antarctica are presented and are used to construct a high-resolution record of the methane inter-polar difference (IPD). The IPD record constrains the latitudinal distribution of emissions and shows that LPIH emissions increased primarily in the tropics, with secondary increases in the subtropical Northern Hemisphere. Anthropogenic and natural sources have different latitudinal characteristics, which are exploited to demonstrate that both anthropogenic and natural sources are needed to explain LPIH changes in methane concentration.


Assuntos
Atmosfera/química , Camada de Gelo/química , Indústrias/tendências , Metano/análise , Agricultura , Regiões Antárticas , Groenlândia , Humanos , Oryza
8.
Environ Microbiol ; 11(3): 640-56, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19278450

RESUMO

This study presents comparative geochemical, microbiological and molecular analyses of Greenland GISP2 ice core samples representing different depths, ages, deposition climates, in situ temperatures, and gas and ionic compositions. Our goal was to determine whether specific organisms, preserved at different depths, correlate with past climate characteristics recorded chronologically in ice layers. Three clear ice samples were selected from 2495, 2545 and 2578 m to represent distinct climatic periods with milder (-45 degrees C), colder (-51 degrees C) and warmer (-39 degrees C) deposition temperatures, and two Marine Isotope Stages, MIS3 (2495 m) and MIS4 (2545 and 2578 m). Results showed higher microbial abundance in ice deposited during colder climates with higher in situ ion content. The constructed universal SSU rRNA gene clone libraries were dominated by Gram-positive sequences (55-65%), and had fewer Proteobacteria (6-9%) and Archaea (1%). The 2495 m library differed from the other two by being dominated by Actinobacteria (55%) rather than Firmicutes. Fungi were more prevalent in the colder climate (40%). For comparison, a library was constructed from an older silty ice sample (3044 m) possibly originating from underlying permafrost with different in situ characteristics (high temperature, high methane and higher cell numbers). It showed significantly different diversity not found in the clear ice libraries. The bacterial and fungal isolates from the clear ice samples were related to organisms originating from Asian deserts, marine aerosols and volcanic dust, suggesting these environments as sources of deposited microorganisms. The observed differences in microbial diversity patterns, especially with the 2495 m library, support the idea that local climate conditions and global atmospheric circulations at different time periods have influenced the origin and composition of the microbial populations preserved at different depths of Greenland ice. Further investigations may lead to the development of microbial 'markers' for identifying specific deposition climates.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Clima , Fungos/classificação , Camada de Gelo/microbiologia , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/isolamento & purificação , Genes de RNAr , Groenlândia , Dados de Sequência Molecular , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
9.
Science ; 311(5762): 838-40, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16469923

RESUMO

One explanation for the abrupt increases in atmospheric CH4, that occurred repeatedly during the last glacial cycle involves clathrate destabalization events. Because marine clathrates have a distinct deuterium/hydrogen (D/H) isotope ratio, any such destabilization event should cause the D/H ratio of atmospheric CH4 (deltaD(CH4)) to increase. Analyses of air trapped in the ice from the second Greenland ice sheet project show stable and/or decreasing deltaD(CH4) values during the end of the Younger and Older Dryas periods and one stadial period, suggesting that marine clathrates were stable during these abrupt warming episodes. Elevated glacial deltaD(CH4) values may be the result of a lower ratio of net to gross wetland CH4 emissions and an increase in petroleum-based emissions.

10.
Proc Natl Acad Sci U S A ; 101(13): 4631-6, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15070769

RESUMO

Our work was motivated by discoveries of prokaryotic communities that survive with little nutrient in ice and permafrost, with implications for past or present microbial life in Martian permafrost and Europan ice. We compared the temperature dependence of metabolic rates of microbial communities in permafrost, ice, snow, clouds, oceans, lakes, marine and freshwater sediments, and subsurface aquifer sediments. Metabolic rates per cell fall into three groupings: (i) a rate, microg(T), for growth, measured in the laboratory at in situ temperatures with minimal disturbance of the medium; (ii) a rate, microm(T), sufficient for maintenance of functions but for a nutrient level too low for growth; and (iii) a rate, micros(T), for survival of communities imprisoned in deep glacial ice, subsurface sediment, or ocean sediment, in which they can repair macromolecular damage but are probably largely dormant. The three groups have metabolic rates consistent with a single activation energy of approximately 110 kJ and that scale as microg(T):microm(T):micros(T) approximately 10(6):10(3):1. There is no evidence of a minimum temperature for metabolism. The rate at -40 degrees C in ice corresponds to approximately 10 turnovers of cellular carbon per billion years. Microbes in ice and permafrost have metabolic rates similar to those in water, soil, and sediment at the same temperature. This finding supports the view that, far below the freezing point, liquid water inside ice and permafrost is available for metabolism. The rate micros(T) for repairing molecular damage by means of DNA-repair enzymes and protein-repair enzymes such as methyltransferase is found to be comparable to the rate of spontaneous molecular damage.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Temperatura , Bactérias/citologia , Sobrevivência Celular , Gelo , Cinética , Termodinâmica
11.
Science ; 301(5635): 945-8, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12920293

RESUMO

Paleoatmospheric records of trace-gas concentrations recovered from ice cores provide important sources of information on many biogeochemical cycles involving carbon, nitrogen, and oxygen. Here, we present a 106,000-year record of atmospheric nitrous oxide (N2O) along with corresponding isotopic records spanning the last 30,000 years, which together suggest minimal changes in the ratio of marine to terrestrial N2O production. During the last glacial termination, both marine and oceanic N2O emissions increased by 40 +/- 8%. We speculate that our records do not support those hypotheses that invoke enhanced export production to explain low carbon dioxide values during glacial periods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA