Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 260: 108743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513973

RESUMO

Treatment against leishmaniasis presents problems, mainly due to the toxicity of the drugs, high cost, and the emergence of resistant strains. A previous study showed that two vanillin-derived synthetic molecules, 3s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], presented antileishmanial activity against Leishmania infantum, L. amazonensis, and L. braziliensis species. In the present work, 3s and 3t were evaluated to treat L. amazonensis-infected mice. Molecules were used pure or incorporated into Poloxamer 407-based micelles. In addition, amphotericin B (AmpB) and its liposomal formulation, Ambisome®, were used as control. Animals received the treatment and, one and 30 days after, they were euthanized to evaluate immunological, parasitological, and biochemical parameters. Results showed that the micellar compositions (3s/Mic and 3t/Mic) induced significant reductions in the lesion mean diameter and parasite load in the infected tissue and distinct organs, as well as a specific and significant antileishmanial Th1-type immune response, which was based on significantly higher levels of IFN-γ, IL-12, nitrite, and IgG2a isotype antibodies. Drug controls showed also antileishmanial action; although 3s/Mic and 3t/Mic have presented better and more significant parasitological and immunological data, which were based on significantly higher IFN-γ production and lower parasite burden in treated animals. In addition, significantly lower levels of urea, creatinine, alanine transaminase, and aspartate transaminase were found in mice treated with 3s/Mic and 3t/Mic, when compared to the others. In conclusion, results suggest that 3s/Mic and 3t/Mic could be considered as therapeutic candidates to treat against L. amazonensis infection.


Assuntos
Antiprotozoários , Benzaldeídos , Leishmania mexicana , Camundongos Endogâmicos BALB C , Micelas , Animais , Camundongos , Benzaldeídos/farmacologia , Benzaldeídos/química , Leishmania mexicana/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antiprotozoários/química , Leishmaniose Cutânea/tratamento farmacológico , Feminino , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Poloxâmero/química , Poloxâmero/farmacologia , Masculino , Baço/parasitologia
2.
Pathogens ; 12(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839586

RESUMO

Leishmania amazonensis can cause cutaneous and visceral clinical manifestations of leishmaniasis in infected hosts. Once the treatment against disease is toxic, presents high cost, and/or there is the emergence of parasite-resistant strains, alternative means through which to control the disease must be developed. In this context, immunotherapeutics combining known drugs with immunogens could be applied to control infections and allow hosts to recover from the disease. In this study, immunotherapeutics protocols associating mimotopes selected by phage display and amphotericin B (AmpB) were evaluated in L. amazonensis-infected mice. Immunogens, A4 and A8 phages, were administered alone or associated with AmpB. Other animals received saline, AmpB, a wild-type phage (WTP), or WTP/AmpB as controls. Evaluations performed one and thirty days after the application of immunotherapeutics showed that the A4/AmpB and A8/AmpB combinations induced the most polarized Th1-type immune responses, which reflected in significant reductions in the lesion's average diameter and in the parasite load in the infected tissue and distinct organs of the animals. In addition, the combination also reduced the drug toxicity, as compared to values found using it alone. In this context, preliminary data presented here suggest the potential to associate A4 and A8 phages with AmpB to be applied in future studies for treatment against leishmaniasis.

3.
Exp Parasitol ; 199: 30-37, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30817917

RESUMO

The treatment against leishmaniasis presents problems, since the currently used drugs are toxic and/or have high costs. In addition, parasite resistance has increased. As a consequence, in this study, a chloroquinolin derivative, namely 7-chloro-N,N-dimethylquinolin-4-amine or GF1059, was in vitro and in vivo tested against Leishmania parasites. Experiments were performed to evaluate in vitro antileishmanial activity and cytotoxicity, as well as the treatment of infected macrophages and the inhibition of infection using pre-treated parasites. This study also investigated the GF1059 mechanism of action in L. amazonensis. Results showed that the compound was highly effective against L. infantum and L. amazonensis, presenting a selectivity index of 154.6 and 86.4, respectively, against promastigotes and of 137.6 and 74.3, respectively, against amastigotes. GF1059 was also effective in the treatment of infected macrophages and inhibited the infection of these cells when parasites were pre-incubated with it. The molecule also induced changes in the parasites' mitochondrial membrane potential and cell integrity, and caused an increase in the reactive oxygen species production in L. amazonensis. Experiments performed in BALB/c mice, which had been previously infected with L. amazonensis promastigotes, and thus treated with GF1059, showed that these animals presented significant reductions in the parasite load when the infected tissue, spleen, liver, and draining lymph node were evaluated. GF1059-treated mice presented both lower parasitism and low levels of enzymatic markers, as compared to those receiving amphotericin B, which was used as control. In conclusion, data suggested that GF1059 can be considered a possible therapeutic target to be tested against leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Cloroquinolinóis/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Anfotericina B/toxicidade , Animais , Antiprotozoários/uso terapêutico , Antiprotozoários/toxicidade , Cloroquinolinóis/uso terapêutico , Cloroquinolinóis/toxicidade , Modelos Animais de Doenças , Eritrócitos/efeitos dos fármacos , Feminino , Concentração Inibidora 50 , Leishmania infantum/crescimento & desenvolvimento , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Fígado/parasitologia , Linfonodos/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Espécies Reativas de Oxigênio/metabolismo , Baço/parasitologia
4.
Biomed Pharmacother ; 109: 779-787, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551531

RESUMO

New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania parasites, but low toxicity in mammalian hosts. Flau-A is a naphthoquinone derivative recently showed to presents an in vitro effective action against Leishmania amazonensis and L. infantum species. In the present work, the in vivo efficacy of Flau-A, which was incorporated into a Poloxamer 407-based micelle system, was evaluated in a murine model against L. amazonensis infection. Amphotericin B (AmB) and Ambisome® were used as controls. The animals were infected and later treated with the compounds. Thirty days after the treatment, parasitological and immunological parameters were evaluated. Results showed that AmB, Ambisome®, Flau-A or Flau-A/M-treated animals presented significantly lower average lesion diameter and parasite burden in tissue and organs evaluated, when compared to the control (saline and micelle) groups. Flau-A or Flau-A/M-treated mice were those presenting the most significant reductions in the parasite burden, when compared to the others. These animals developed also a more polarized antileishmanial Th1 immune response, which was based on significantly higher levels of IFN-γ, IL-12, TNF-α, GM-CSF, and parasite-specific IgG2a isotype; associated with low levels of IL-4, IL-10, and IgG1 antibody. The absence of toxicity was found in these animals, although mice receiving AmB have showed high levels of renal and hepatic damage markers. In conclusion, results suggested that the Flau-A/M compound may be considered as a possible therapeutic target to be evaluated against human leishmaniasis.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Micelas , Naftoquinonas/uso terapêutico , Poloxâmero/uso terapêutico , Animais , Antiprotozoários/química , Antiprotozoários/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Excipientes/uso terapêutico , Feminino , Leishmania/metabolismo , Leishmaniose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/química , Naftoquinonas/farmacocinética , Poloxâmero/química , Poloxâmero/farmacocinética , Resultado do Tratamento
5.
Parasitol Int ; 68(1): 63-72, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30339837

RESUMO

Clioquinol (5-chloro-7-iodoquinolin-8-ol or ICHQ) was recently showed to presents an in vitro effective antileishmanial action, causing changes in membrane permeability, mitochondrial functionality, and parasite morphology. In the present study, ICHQ was incorporated into a Poloxamer 407-based polymeric micelles system (ICHQ/M), and its antileishmanial activity was in vivo evaluated in L. amazonensis-infected BALB/c mice. Amphotericin B (AmpB) and its liposomal formulation (Ambisome®) were used as controls. Parasitological and immunological evaluations were performed 30 days after the treatment. Results indicated more significant reductions in the average lesion diameter and parasite burden in ICHQ or ICHQ/M-treated mice, which were associated with the development of a polarized Th1 immune response, based on production of high levels of IFN-γ, IL-12, TNF-α, GM-CSF, and antileishmanial IgG2a antibody. Control groups´ mice produced high levels of IL-4, IL-10, and IgG1 isotype antibody. No organic toxicity was found by using ICHQ or ICHQ/M to treat the animals, although those receiving AmpB and Ambisome® have presented higher levels of renal and hepatic damage markers. In conclusion, results suggested that the ICHQ/M composition can be considered as an antileishmanial candidate to be tested against human leishmaniasis.


Assuntos
Antiprotozoários/imunologia , Antiprotozoários/uso terapêutico , Clioquinol/imunologia , Clioquinol/uso terapêutico , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Poloxâmero/administração & dosagem , Anfotericina B/administração & dosagem , Anfotericina B/uso terapêutico , Anfotericina B/toxicidade , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/uso terapêutico , Antiprotozoários/administração & dosagem , Antiprotozoários/toxicidade , Clioquinol/administração & dosagem , Citocinas/biossíntese , Citocinas/imunologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imunoglobulina G/sangue , Interferon gama/biossíntese , Interferon gama/imunologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Visceral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Carga Parasitária , Poloxâmero/química , Células Th1
6.
Acta Trop ; 191: 29-37, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30586571

RESUMO

New therapeutics against leishmaniasis are desirable, since the current drugs applied against this disease complex presents problems, such as the toxicity, high cost and/or parasite resistance. In the present study, a new fluoroquinoline derivate, namely 7-chloro-N-(4-fluorophenethyl)quinolin-4-amine or GF1061, was evaluated regarding to its in vitro antileishmanial action against Leishmania infantum and L. amazonensis species, as well as by its toxicity in mammalian cells and efficacy in the treatment of infected macrophages. The mechanism of action of this molecule in L. amazonensis and the therapeutic efficacy in infected BALB/c mice were also evaluated. Results showed that GF1061 was effective against both parasite species, showing selectivity index (SI) of 38.7 and 42.7 against L. infantum and L. amazonensis promastigotes, respectively, and of 45.0 and 48.9 against the amastigotes, respectively. Amphotericin B (AmpB), used as control, showed SI values of 6.6 and 8.8 against L. infantum and L. amazonensis promastigotes, respectively, and of 2.2 and 2.7 against the amastigotes, respectively. The molecule was effective in treat infected macrophages, as well as it induced alterations in the mitochondrial membrane potential, increase in the reactive oxygen species production, and in the cell integrity of the parasites. Regarding to the in vivo experiments, BALB/c mice (n = 8 per group) were subcutaneously infected with 106L. amazonensis stationary promastigotes and, 60 days post-infection, they received saline or were treated during 10 days, once a day, with AmpB (1 mg/kg body weight) or GF1061 (5 mg/kg body weight). One day after the treatment, the infected tissue, spleen, liver, and draining lymph node (dLN) of the animals were collected, and the parasite load was evaluated. GF1061-treated mice, as compared to the saline and AmpB groups, showed significant reductions in the parasitism in the infected tissue (66% and 62%, respectively), liver (69% and 44%, respectively), spleen (71% and 38%, respectively), and dLN (72% and 48%, respectively). In conclusion, results suggested that GF1061 may be considered as a possible therapeutic target to be evaluated against leishmaniasis in other mammalian hosts.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Fluoroquinolonas/uso terapêutico , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Animais , Leishmaniose/parasitologia , Fígado/parasitologia , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Carga Parasitária , Espécies Reativas de Oxigênio , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA