RESUMO
A short-term study was conducted to compare the effect of using poplar wood chips (PWC) instead of wheat straw (WS) litter in dairy cows. A total of 38 lactating Holstein cows (204 ± 119 days in milk, 26.9 ± 6.5 kg of milk yield [MY]) were housed in a tiestall farm for a 10-d trial including 5 d of adaptation followed by 5 sampling days (from d 5 to 10). Cows were divided into 2 homogeneous groups: one group was bedded with WS, and the second with PWC. Both litter materials were provided in the amount of 7 kg/stall per d. Each group was composed of 3 subgroups of 6 or 7 cows; the subgroups were physically separated along the feeding line by wooden boards. During the sampling days, fecal composition, used litter composition, and bacterial count (Clostridium spp., Salmonella spp., Escherichia coli, Lactobacillus, and total bacterial count) were analyzed by subgroup twice a day. On d 1 and from d 5 to 10, udder hygiene score and cow cleanliness score were also evaluated individually twice a day. Meanwhile MY, milk hygiene (total bacterial count [TBC], coliform bacterial count [CBC], and spore-forming units [SFU]) and quality were measured and analyzed from 9 animals per group. Moreover, individual animal behavior (body position and behavioral traits) and subgroup dry matter intake were measured on d 9 and 10. Fecal dry matter did not differ between groups, PWC had the lowest used litter moisture and N content favoring the highest clean cow frequency, but also gave rise to the greatest used litter microbial contamination. The MY, milk quality, TBC, SFU, and CBC were similar. The lying behavior frequency was similar between groups. However, the PWC group showed the lowest sleeping frequency, the highest frequency of other behaviors (including discomfort signs), and the lowest dry matter intake. However, despite this apparent reduction in cow comfort, no biologically important differences were observed in this short-term study between cows on PWC and WS in milk production or hygiene.
Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Triticum , Madeira , Comportamento Animal , Higiene , Dieta/veterináriaRESUMO
Klebsiella pneumoniae is the most common Klebsiella species infecting animals and is one of the causing agents of mastitis in cows. The rise of antimicrobial resistance in K. pneumoniae, particularly in strains producing extended-spectrum ß-lactamases (ESBLs) and/or carbapenemases, is of concern worldwide. Recently (Regulation UE No 2022/1255), carbapenems and cephalosporins in combination with ß-lactamase inhibitors have been reserved only to human treatments in the European Union. The aim of this study was to investigate the role of cattle as carrier of human pathogenic carbapenem-resistant (CR) and ESBL-producing K. pneumoniae. On this purpose, a study involving 150 dairy farms in Parma province (Northern Italy) and 14 non replicate K. pneumoniae isolates from patients admitted at Parma University-Hospital was planned. Four multidrug resistant (MDR) K. pneumoniae strains were detected from 258 milk filters collected between 2019 and 2021. One carbapenemase KPC-3-positive K. pneumoniae ST307 (0.4 %; 95 % CI - 0.07 - 2.2) was detected in milk filters. The isolate also harboured OXA-9, CTX-M-15 and SHV-106 determinants, together with genes conferring resistance to aminoglycosides (aac(3')-IIa, aph (3â³)-Ib, aph (6)-Id), fluoroquinolones (oqxA, oqxB, qnrB1), phosphonic acids (fosA6), sulphonamides (sul2), tetracyclines (tet(A)6) and trimethoprim (dfrA14). One KPC-3-producing K. pneumoniae ST307 was identified also among the human isolates, thus suggesting a possible circulation of pathogens out of the clinical settings. The remaining three bovine isolates were MDR ESBL-producing K. pneumoniae characterized by different genomic profiles: CTX-M-15, TEM-1B and SHV-187 genes (ST513); CTX-M-15 and SHV-145 (ST307); SHV-187 and DHA-1 (ST307). Occurrence of ESBL-producing K. pneumoniae in milk filters was 1.2 % (95 % CI 0.4-3.4). All the isolates showed resistance to aminoglycosides, 3rd-generation cephalosporins, and fluoroquinolones. Among the human isolates, two multidrug resistant ESBL-producing K. pneumoniae ST307 were found, thus confirming the circulation of this high-risk lineage between humans and cattle. Our findings suggest that food-producing animals can carry human pathogenic microorganisms harboring resistance genes against carbapenems and 3rd-generation cephalosporins, even if not treated with such antimicrobials. Moreover, on the MDR K. pneumoniae farms, the antimicrobial use was much higher than the Italian median value, thus highlighting the importance of a more prudent use of antibiotics in animal productions.