RESUMO
BACKGROUND: Chronic respiratory diseases, whose one of the hallmarks is oxidative stress, are still incurable and need novel therapeutic tools and pharmaceutical agents. The phenolic compounds contained in grape are endowed with well-recognized anti-oxidant, anti-inflammatory, anti-cancer, and anti-aging activities. Considering that natural anti-oxidants, such as proanthocyanidins, have poor water solubility and oral bioavailability, we have developed a drug delivery system based on solid lipid nanoparticles (SLN), apt to encapsulate grape seed extract (GSE), containing proanthocyanidins. METHODS: Plain, 6-coumarin (6-Coum), DiR- and GSE-loaded SLN were produced with the melt-emulsion method. Physicochemical characterization of all prepared SLN was determined by photon correlation spectroscopy and laser Doppler anemometry. MTT assay (spectrophotometry) and propidium iodide (PI) assay (cytofluorimetry) were used to assess cell viability. Flow cytometry coupled with cell imaging was performed for assessing apoptosis and necrosis by Annexin V/7-AAD staining (plain SLE), cell internalization (6-Coum-SLN) and reactive oxygen species (ROS) production (SLN-GSE). NF-κB nuclear translocation was studied by immunofluorescence. In vivo bio-imaging was used to assess lung deposition and persistence of aerosolized DiR-loaded SLN. RESULTS: Plain SLN were not cytotoxic when incubated with H441 airway epithelial cells, as judged by both PI and MTT assays as well as by apoptosis/necrosis evaluation. 6-Coum-loaded SLN were taken up by H441 cells in a dose-dependent fashion and persisted into cells at detectable levels up to 16 days. SLN were detected in mice lungs up to 6 days. SLN-GSE possessed 243 nm as mean diameter, were negatively charged, and stable in size at 37 °C in Simulated Lung Fluid up to 48 h and at 4 °C in double distilled water up to 2 months. The content of SLN in proanthocyanidins remained unvaried up to 2 months. GSE-loaded SLN determined a significant reduction in ROS production when added 24-72 h before the stimulation with hydrogen peroxide. Interestingly, while at 24 h free GSE determined a higher decrease of ROS production than SLN-GSE, the contrary was seen at 48 and 72 h. Similar results were observed for NF-κB nuclear translocation. CONCLUSIONS: SLN are a biocompatible drug delivery system for natural anti-oxidants obtained from grape seed in a model of oxidative stress in airway epithelial cells. They feature stability and long-term persistence inside cells where they release proanthocyanidins. These results could pave the way to novel anti-oxidant and anti-inflammatory therapies for chronic respiratory diseases.
Assuntos
Células Epiteliais/patologia , Extrato de Sementes de Uva/administração & dosagem , Inflamação/patologia , Pulmão/patologia , Nanopartículas/química , Proantocianidinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Extrato de Sementes de Uva/farmacologia , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Necrose , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Proantocianidinas/farmacologia , Transporte Proteico/efeitos dos fármacosRESUMO
Here, the oxoglutarate carrier, already isolated from various sources and described in the literature, has been purified from rat brain and reconstituted in proteoliposomes for an accurate kinetic study. The rate of uptake of labelled oxoglutarate and malate has been measured in various conditions, essentially in double substrate experiments. The data so obtained fit the hypothesis that the carrier operates by a uniport-exchange mechanism and provide significant values for the kinetic constants and the equilibrium constants implied in the process. Their analysis leads to the conclusion that the carrier is maximally efficient in the exchange between external malate and internal oxoglutarate, as required by the malate/aspartate shuttle, which should be the main role of the oxoglutarate carrier in brain mitochondria.
Assuntos
Encéfalo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Transporte de Íons , Ácidos Cetoglutáricos/metabolismo , Cinética , Lipossomos/metabolismo , Malatos/metabolismo , Modelos Biológicos , RatosRESUMO
A method for rapid reconstitution of ADP/ATP carrier from Jerusalem artichoke (Helianthus tuberosus L.) tubers mitochondria in proteoliposomes is described. The method is based on the well known property of the Amberlite resin to absorb the detergent allowing proteoliposome formation. This has been achieved by a micro-batchwise technique, using a rotating plate stirrer. An evaluation of the optimal conditions, in comparison with the more usual column method is presented. The purified ADP/ATP carrier, incorporated in proteoliposomes by this method, shows a high transport activity and a higher specific activity with respect to proteoliposomes obtained by the column procedure. Furthermore the proteoliposomal preparations are more homogeneous in size, with a diameter ranging from 300 to 350 nm. The method is suitable for the reconstitution of other membrane transport proteins.
Assuntos
Helianthus/enzimologia , Mitocôndrias/enzimologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Lipossomos , Desnaturação Proteica , Fatores de TempoRESUMO
Photostability of amlodipine (AML) has been monitored in several pharmaceutical inclusion systems characterized by plurimolecular aggregation of the drug and excipients with high molecular weight. Several formulations including cyclodextrins, liposomes and microspheres have been prepared and characterized. The photodegradation process has been monitored according to the conditions suggested by the ICH Guideline for photostability testing, by using a light cabinet equipped with a Xenon lamp and monitored by spectrophotometry. The formulations herein tested have been found to be able to considerably increase drug stability, when compared with usual pharmaceutical forms. The residual concentration detected in the inclusion complexes with cyclodextrins and liposomes was 90 and 77%, respectively, while a very good value of 97% was found for microspheres, after a radiant exposure of 11,340 kJm(-2).
Assuntos
Anlodipino/efeitos da radiação , Desenho de Fármacos , Raios Ultravioleta , Anlodipino/química , Ciclodextrinas/química , Ciclodextrinas/efeitos da radiação , Estabilidade de Medicamentos , Lipossomos/química , Lipossomos/efeitos da radiação , Microesferas , FotoquímicaRESUMO
The citrate carrier from maize (Zea mays) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and hydroxyapatite/celite in the presence of cardiolipin. SDS-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 31 kD. When reconstituted into liposomes, the citrate carrier catalyzed a pyridoxal 5'-P-sensitive citrate/citrate exchange. It was purified 224-fold with a recovery of 50% and a protein yield of 0.22% with respect to the mitochondrial extract. In the reconstituted system the purified citrate carrier catalyzed a first-order reaction of citrate/citrate (0.065 min-1) or citrate/malate exchange (0.075 min-1). Among the various substrates and inhibitors tested, the reconstituted protein transported citrate, cis-aconitate, isocitrate, L-malate, succinate, malonate, glutarate, alpha-ketoglutarate, oxaloacetate, and alpha-ketoadipate and was inhibited by pyridoxal 5'-P, phenylisothiocyanate, mersalyl, and p-hydroxymercuribenzoate (but not N-ethylmaleimide), 1,2, 3-benzentricarboxylate, benzylmalonate, and butylmalonate. The activation energy of the citrate/citrate exchange was 66.5 kJ/mol between 10 degrees C and 35 degrees C; the half-saturation constant (Km) for citrate was 0.65 +/- 0.05 mM and the maximal rate (Vmax) of the citrate/citrate exchange was 13.0 +/- 1.0 micromol min-1 mg-1 protein at 25 degrees C.