Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(3): eadg1222, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241367

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia treatable with antiarrhythmic drugs; however, patient responses remain highly variable. Human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) are useful for discovering precision therapeutics, but current platforms yield phenotypically immature cells and are not easily scalable for high-throughput screening. Here, primary adult atrial, but not ventricular, fibroblasts induced greater functional iPSC-aCM maturation, partly through connexin-40 and ephrin-B1 signaling. We developed a protein patterning process within multiwell plates to engineer patterned iPSC-aCM and atrial fibroblast coculture (PC) that significantly enhanced iPSC-aCM structural, electrical, contractile, and metabolic maturation for 6+ weeks compared to conventional mono-/coculture. PC displayed greater sensitivity for detecting drug efficacy than monoculture and enabled the modeling and pharmacological or gene editing treatment of an AF-like electrophysiological phenotype due to a mutated sodium channel. Overall, PC is useful for elucidating cell signaling in the atria, drug screening, and modeling AF.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Fibrilação Atrial/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cocultura , Miócitos Cardíacos/metabolismo , Fibroblastos/metabolismo
2.
Physiol Rep ; 10(5): e15207, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35262277

RESUMO

Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to age-related heart failure with preserved ejection fraction (HFpEF). The hypothesis tested is that TTR deposited in vitro disrupts cardiac myocyte cell-to-cell and cell-to-matrix adhesion complexes, resulting in altered calcium handling, force generation, and sarcomeric disorganization. Human iPSC-derived cardiomyocytes and neonatal rat ventricular myocytes (NRVMs), when grown on TTR-coated polymeric substrata mimicking the stiffness of the healthy human myocardium (10 kPa), had decreased contraction and relaxation velocities as well as decreased force production measured using traction force microscopy. Both NRVMs and adult mouse atrial cardiomyocytes had altered calcium kinetics with prolonged transients when cultured on TTR fibril-coated substrates. Furthermore, NRVMs grown on stiff (~GPa), flat or microgrooved substrates coated with TTR fibrils exhibited significantly decreased intercellular electrical coupling as shown by FRAP dynamics of cells loaded with the gap junction-permeable dye calcein-AM, along with decreased gap junction content as determined by quantitative connexin 43 staining. Significant sarcomeric disorganization and loss of sarcomere content, with increased ubiquitin localization to the sarcomere, were seen in NRVMs on various TTR fibril-coated substrata. TTR presence decreased intercellular mechanical junctions as evidenced by quantitative immunofluorescence staining of N-cadherin and vinculin. Current therapies for wtATTR are cost-prohibitive and only slow the disease progression; therefore, better understanding of cardiomyocyte maladaptation induced by TTR amyloid may identify novel therapeutic targets.


Assuntos
Neuropatias Amiloides Familiares , Insuficiência Cardíaca , Animais , Cálcio , Cálcio da Dieta , Camundongos , Miócitos Cardíacos , Pré-Albumina/química , Pré-Albumina/farmacologia , Ratos , Sarcômeros , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA