RESUMO
The metal-electrode interface is key to unlocking emergent behaviour in all organic electrified systems, from battery technology to molecular electronics. In the latter, interfacial engineering has enabled efficient transport, higher device stability, and novel functionality. Mechanoresistivity - the change in electrical behaviour in response to a mechanical stimulus and a pathway to extremely sensitive force sensors - is amongst the most studied phenomena in molecular electronics, and the molecule-electrode interface plays a pivotal role in its emergence, reproducibility, and magnitude. In this contribution, we show that organometallic molecular wires incorporating a Pt(II) cation show mechanoresistive behaviour of exceptional magnitude, with conductance modulations of more than three orders of magnitude upon compression by as little as 1 nm. We synthesised series of cyclometalated Pt(II) molecular wires, and used scanning tunnelling microscopy - break junction techniques to characterise their electromechanical behaviour. Mechanoresistivity arises from an interaction between the Pt(II) cation and the Au electrode triggered by mechanical compression of the single-molecule device, and theoretical modelling confirms this hypothesis. Our study provides a new tool for the design of functional molecular wires by exploiting previously unreported ion-metal interactions in single-molecule devices, and develops a new framework for the development of mechanoresistive molecular junctions.
RESUMO
Mechanosensitive molecular junctions, where conductance is sensitive to an applied stress such as force or displacement, are a class of nanoelectromechanical systems unique for their ability to exploit quantum mechanical phenomena. Most studies so far relied on reconfiguration of the molecule-electrode interface to impart mechanosensitivity, but this approach is limited and, generally, poorly reproducible. Alternatively, devices that exploit conformational flexibility of molecular wires have been recently proposed. The mechanosensitive properties of molecular wires containing the 1,1'-dinaphthyl moiety are presented here. Rotation along the chemical bond between the two naphthyl units is possible, giving rise to two conformers (transoid and cisoid) that have distinctive transport properties. When assembled as single-molecule junctions, it is possible to mechanically trigger the transoid to cisoid transition, resulting in an exquisitely sensitive mechanical switch with high switching ratio (> 102). Theoretical modeling shows that charge reconfiguration upon transoid to cisoid transition is responsible for the observed behavior, with generation and subsequent lifting of quantum interference features. These findings expand the experimental toolbox of molecular electronics with a novel chemical structure with outstanding electromechanical properties, further demonstrating the importance of subtle changes in charge delocalization on the transport properties of single-molecule devices.