Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977018

RESUMO

Two-dimensional (2D)/three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells (PSCs)1,2. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks that leads to degradation in performance over time3,4. We hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration. We explored a set of perovskitoids of varying dimensionality, and found that cation migration within perovskitoid/perovskite heterostructures was suppressed compared to the 2D/3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces - this the result of enhanced octahedral connectivity and out-of-plane orientation. The 2D perovskitoid (A6BfP)8Pb7I22 (A6BfP: N-aminohexyl-benz[f]-phthalimide) provides efficient passivation of perovskite surfaces and enables uniform large-area perovskite films. Devices based on perovskitoid/perovskite heterostructures achieve a certified quasi-steady-state power conversion efficiency of 24.6% for centimeter-area PSCs. We removed the fragile hole transport layers and showed stable operation of the underlying perovskitoid/perovskite heterostructure at 85°C for 1,250 hours for encapsulated large-area devices in an air ambient.

2.
Inorg Chem ; 62(49): 20142-20152, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009949

RESUMO

Chiral hybrid metal-halide semiconductors (MHS) pose as ideal candidates for spintronic applications owing to their strong spin-orbit coupling (SOC), and long spin relaxation times. Shedding light on the underlying structure-property relationships is of paramount importance for the targeted synthesis of materials with an optimum performance. Herein, we report the synthesis and optical properties of 1D chiral (R-/S-THBTD)SbBr5 (THBTD = 4,5,6,7-tetrahydro-benzothiazole-2,6-diamine) semiconductors using a multifunctional ligand as a countercation and a structure directing agent. (R-/S-THBTD)SbBr5 feature direct and indirect band gap characteristics, exhibiting photoluminescence (PL) light emission at RT that is accompanied by a lifetime of a few ns. Circular dichroism (CD), second harmonic generation (SHG), and piezoresponse force microscopy (PFM) studies validate the chiral nature of the synthesized materials. Density functional theory (DFT) calculations revealed a Rashba/Dresselhaus (R/D) spin splitting, supported by an energy splitting (ER) of 23 and 25 meV, and a Rashba parameter (αR) of 0.23 and 0.32 eV·Å for the R and S analogs, respectively. These values are comparable to those of the 3D and 2D perovskite materials. Notably, (S-THBTD)SbBr5 has been air-stable for a year, a record performance among chiral lead-free MHS. This work demonstrates that low-dimensional, lead-free, chiral semiconductors with exceptional air stability can be acquired, without compromising spin splitting and manipulation performance.

3.
ACS Appl Mater Interfaces ; 15(36): 42717-42729, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639320

RESUMO

Hybrid metal halide semiconductors are a unique family of materials with immense potential for numerous applications. For this to materialize, environmental stability and toxicity deficiencies must be simultaneously addressed. We report here a porous, visible light semiconductor, namely, (DHS)Bi2I8 (DHS = [2.2.2] cryptand), which consists of nontoxic, earth-abundant elements, and is water-stable for more than a year. Gas- and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2O and D2O at room temperature (RT) while remaining impervious to N2 and CO2. Solid-state NMR measurements and density functional theory (DFT) calculations verified the incorporation of H2O and D2O in the molecular cages, validating the porous nature. In addition to porosity, the material exhibits broad band-edge light emission centered at 600 nm with a full width at half-maximum (fwhm) of 99 nm, which is maintained after 6 months of immersion in H2O. Moreover, (DHS)Bi2I8 exhibits bacteriocidal action against three Gram-positive and three Gram-negative bacteria, including antibiotic-resistant strains. This performance, coupled with the recorded water stability and porous nature, renders it suitable for a plethora of applications, from solid-state batteries to water purification and disinfection.

4.
Adv Sci (Weinh) ; 10(26): e2303133, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37414727

RESUMO

2D hybrid organic-inorganic perovskites (HOIPs) are commonly found under subcritical cyclic stresses and suffer from fatigue issues during device operation. However, their fatigue properties remain unknown. Here, the fatigue behavior of (C4 H9 -NH3 )2 (CH3 NH3 )2 Pb3 I10 , the archetype 2D HOIP, is systematically investigated by atomic force microscopy (AFM). It is found that 2D HOIPs are much more fatigue resilient than polymers and can survive over 1 billion cycles. 2D HOIPs tend to exhibit brittle failure at high mean stress levels, but behave as ductile materials at low mean stress levels. These results suggest the presence of a plastic deformation mechanism in these ionic 2D HOIPs at low mean stress levels, which may contribute to the long fatigue lifetime, but is inhibited at higher mean stresses. The stiffness and strength of 2D HOIPs are gradually weakened under subcritical loading, potentially as a result of stress-induced defect nucleation and accumulation. The cyclic loading component can further accelerate this process. The fatigue lifetime of 2D HOIPs can be extended by reducing the mean stress, stress amplitude, or increasing the thickness. These results can provide indispensable insights into designing and engineering 2D HOIPs and other hybrid organic-inorganic materials for long-term mechanical durability.

5.
Inorg Chem ; 62(14): 5496-5504, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976265

RESUMO

We utilized the etb platform of MOFs for the synthesis of two new water-stable compounds based on amide functionalized trigonal tritopic organic linkers H3BTBTB (L1), H3BTCTB (L2) and Al3+ metal ions, namely, Al(L1) and Al(L2). The mesoporous Al(L1) material exhibits an impressive methane (CH4) uptake at high pressures and ambient temperature. The corresponding values of 192 cm3 (STP) cm-3, 0.254 g g-1 at 100 bar, and 298 K are among the highest reported for mesoporous MOFs, while the gravimetric and volumetric working capacities (between 80 bar and 5 bar) can be well compared to the best MOFs for CH4 storage. Furthermore, at 298 K and 50 bar, Al(L1) adsorbs 50 wt % (304 cm3 (STP) cm-3) CO2, values among the best recorded for CO2 storage using porous materials. To gain insight into the mechanism accounting for the resultant enhanced CH4 storage capacity, theoretical calculations were performed, revealing the presence of strong CH4 adsorption sites near the amide groups. Our work demonstrates that amide functionalized mesoporous etb-MOFs can be valuable for the design of versatile coordination compounds with CH4 and CO2 storage capacities comparable to ultra-high surface area microporous MOFs.

6.
ACS Appl Mater Interfaces ; 15(6): 7919-7927, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36740778

RESUMO

The implementation of two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) in semiconductor device applications will have to accommodate the co-existence of strain and temperature stressors and requires a thorough understanding of the thermomechanical behavior of 2D HOIPs. This will mitigate thermomechanical stability issues and improve the durability of the devices, especially when one considers the high susceptibility of 2D HOIPs to temperature due to their soft nature. Here, we employ atomic force microscopy (AFM) stretching of suspended membranes to measure the temperature dependence of the in-plane Young's modulus (E∥) of model Ruddlesden-Popper 2D HOIPs with a general formula of (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (here, n = 1, 3, or 5). We find that E∥ values of these 2D HOIPs exhibit a prominent non-monotonic dependence on temperature, particularly an abnormal thermal stiffening behavior (nearly 40% change in E∥) starting around the order-disorder transition temperature of the butylammonium spacer molecules, which is significantly different from the thermomechanical behavior expected from their 3D counterpart (CH3NH3PbI3) or other low-dimensional material systems. Further raising the temperature eventually reverses the trend to thermal softening. The magnitude of the thermally induced change in E∥ is also much higher in 2D HOIPs than in their 3D analogs. Our results can shed light on the structural origin of the thermomechanical behavior and provide needed guidance to design 2D HOIPs with desired thermomechanical properties to meet the application needs.

7.
Chem Rev ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728153

RESUMO

Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.

8.
Angew Chem Int Ed Engl ; 62(12): e202218429, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36656785

RESUMO

In this work we report a strategy for generating porosity in hybrid metal halide materials using molecular cages that serve as both structure-directing agents and counter-cations. Reaction of the [2.2.2] cryptand (DHS) linker with PbII in acidic media gave rise to the first porous and water-stable 2D metal halide semiconductor (DHS)2 Pb5 Br14 . The corresponding material is stable in water for a year, while gas and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2 O and D2 O at room temperature (RT). Solid-state NMR measurements and DFT calculations verified the incorporation of H2 O and D2 O in the organic linker cavities and shed light on their molecular configuration. In addition to porosity, the material exhibits broad light emission centered at 617 nm with a full width at half-maximum (FWHM) of 284 nm (0.96 eV). The recorded water stability is unparalleled for hybrid metal halide and perovskite materials, while the generation of porosity opens new pathways towards unexplored applications (e.g. solid-state batteries) for this class of hybrid semiconductors.

9.
Inorg Chem ; 61(21): 8233-8240, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35580355

RESUMO

We report three new mixed-anion two-dimensional (2D) compounds: SrFPbBiS3, SrFAg0.5Bi1.5S3, and Sr2F2Bi2/3S2. Their structures as well as the parent compound SrFBiS2 were refined using single-crystal X-ray diffraction data, with the sequence of SrFBiS2, SrFPbBiS3, and SrFAg0.5Bi1.5S3 defining the new homologous series SrFMnBiSn+2 (M = Pb, Ag0.5Bi0.5; n = 0, 1). Sr2F2Bi2/3S2 has a different structure, which is modulated with a q vector of 1/3b* and was refined in superspace group X2/m(0ß0)00 as well as in the 1 × 3 × 1 superstructure with space group C2/m (with similar results). Sr2F2Bi2/3S2 features hexagonal layers of alternating [Sr2F2]2+ and [Bi2/3S2]2-, and the modulated structure arises from the unique ordering pattern of Sr2+ cations. SrFPbBiS3, SrFAg0.5Bi1.5S3, and Sr2F2Bi2/3S2 are semiconductors with band gaps of 1.31, 1.21, and 1.85 eV, respectively. The latter compound exhibits room temperature red photoluminescence at ∼700 nm.

10.
J Am Chem Soc ; 144(18): 8223-8230, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482958

RESUMO

A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.

11.
J Am Chem Soc ; 144(14): 6390-6409, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35378979

RESUMO

The nature of the organic cation in two-dimensional (2D) hybrid lead iodide perovskites tailors the structural and technological features of the resultant material. Herein, we present three new homologous series of (100) lead iodide perovskites with the organic cations allylammonium (AA) containing an unsaturated C═C group and iodopropylammonium (IdPA) containing iodine on the organic chain: (AA)2MAn-1PbnI3n+1 (n = 3-4), [(AA)x(IdPA)1-x]2MAn-1PbnI3n+1 (n = 1-4), and (IdPA)2MAn-1PbnI3n+1 (n = 1-4), as well as their perovskite-related substructures. We report the in situ transformation of AA organic layers into IdPA and the incorporation of these cations simultaneously into the 2D perovskite structure. Single-crystal X-ray diffraction shows that (AA)2MA2Pb3I10 crystallizes in the space group P21/c with a unique inorganic layer offset (0, <1/2), comprising the first example of n = 3 halide perovskite with a monoammonium cation that deviates from the Ruddlesden-Popper (RP) halide structure type. (IdPA)2MA2Pb3I10 and the alloyed [(AA)x(IdPA)1-x]2MA2Pb3I10 crystallize in the RP structure, both in space group P21/c. The adjacent I···I interlayer distance in (AA)2MA2Pb3I10 is ∼5.6 Å, drawing the [Pb3I10]4- layers closer together among all reported n = 3 RP lead iodides. (AA)2MA2Pb3I10 presents band-edge absorption and photoluminescence (PL) emission at around 2.0 eV that is slightly red-shifted in comparison to (IdPA)2MA2Pb3I10. The band structure calculations suggest that both (AA)2MA2Pb3I10 and (IdPA)2MA2Pb3I10 have in-plane effective masses around 0.04m0 and 0.08m0, respectively. IdPA cations have a greater dielectric contribution than AA. The excited-state dynamics investigated by transient absorption (TA) spectroscopy reveal a long-lived (∼100 ps) trap state ensemble with broad-band emission; our evidence suggests that these states appear due to lattice distortions induced by the incorporation of IdPA cations.

12.
ACS Nano ; 16(3): 3917-3925, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35235746

RESUMO

Strong coupling between light and matter can produce hybrid eigenstates known as exciton-polaritons. Although polariton dynamics are important photophysical properties, the relaxation pathways of polaritons in different coupling regimes have seen limited attention. This paper reports the dynamics of hybridized states from 2D Ruddlesden-Popper perovskites coupled to plasmonic nanoparticle lattices. The open cavity architecture of Al lattices enables the coupling strength to be modulated by varying either the lead halide perovskite film thickness or the superstrate refractive index. Both experiments and finite-difference time-domain simulations of the optical dispersion diagrams showed avoided crossings that are a signature of strong coupling. Our analytical model also elucidated the correlation between the exciton/plasmon mixing ratio and polariton coupling strength. Using fs-transient absorption spectroscopy, we found that both the upper and lower polaritons have shorter lifetimes than the excitons and that polaritons can show faster excited-state dynamics when they have access to additional energy transfer channels.

13.
Nat Nanotechnol ; 17(1): 45-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34811551

RESUMO

Understanding and tailoring the physical behaviour of halide perovskites under practical environments is critical for designing efficient and durable optoelectronic devices. Here, we report that continuous light illumination leads to >1% contraction in the out-of-plane direction in two-dimensional hybrid perovskites, which is reversible and strongly dependent on the specific superlattice packing. X-ray photoelectron spectroscopy measurements show that constant light illumination results in the accumulation of positive charges in the terminal iodine atoms, thereby enhancing the bonding character of inter-slab I-I interactions across the organic barrier and activating out-of-plane contraction. Correlated charge transport, structural and photovoltaic measurements confirm that the onset of the light-induced contraction is synchronized to a threefold increase in carrier mobility and conductivity, which is consistent with an increase in the electronic band dispersion predicted by first-principles calculations. Flux-dependent space-charge-limited current measurement reveals that light-induced interlayer contraction activates interlayer charge transport. The enhanced charge transport boosts the photovoltaic efficiency of two-dimensional perovskite solar cells up to 18.3% by increasing the device's fill factor and open-circuit voltage.

15.
ACS Appl Mater Interfaces ; 13(31): 37308-37315, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324297

RESUMO

Thorium as a potential nuclear fuel for the next-generation thorium-based molten salt reactors holds significant environmental and economic promise over the current uranium-based nuclear reactors. However, because thorium (Th4+) usually coexists with other rare earth elements, alkali or alkaline earth metals in minerals, or highly acidic radioactive waste, seeking acid-resistant sorbents with excellent selectivity, high capacity, and fast removal rate for Th4+ is still a challenging task. In this work, we investigated a robust layered metal sulfide (KInSn2S6, KMS-5) for Th4+ removal from strong acidic solutions. We report that KMS-5 could capture Th4+ from a 0.1 M HNO3 solution with extremely high efficiency (∼99.9%), fast sorption kinetics (equilibrium time < 10 min), and large distribution coefficient (up to 1.5 × 106 mL/g). Furthermore, KMS-5 exhibited excellent sorption selectivity towards Th4+ in the presence of large amounts of competitive metal ions like Eu3+, Na+, and Ca2+. This extraordinary capture property for Th4+ is attributed to the facile ion exchange of Th4+ with K+ in the interlayers and subsequent formation of a stable coordination complex via Th-S bonds. These results indicate that KMS-5 is a promising functional sorbent for the effective capture of Th4+ from highly acidic solutions.

16.
ACS Appl Mater Interfaces ; 13(27): 31642-31649, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34189905

RESUMO

In-plane strains are commonly found in two-dimensional (2D) metal halide organic-inorganic perovskites (HOIPs). The in-plane mechanical properties of 2D HOIPs are vital for mitigating the strain-induced stability issues of 2D HOIPs, yet their structure and mechanical property relationship largely remains unknown. Here, we employed atomic force microscope indentation to systematically investigate the in-plane Young's moduli E∥ of 2D lead halide Ruddlesden-Popper HOIPs with a general formula of (R-NH3)2PbX4, where the spacer molecules R-NH3+ are linear alkylammonium cations (CmH2m+1-NH3+, m = 4, 6, 8, or 12) and X = I, Br, or Cl. Fixing the spacer molecule to butylammonium, we discovered that the E∥ of 2D HOIPs generally follows the trend of Pb-X bond strength, different from the tendency found in the out-of-plane moduli E⊥, showing more prominent effects of the metal halide inorganic framework on E∥ than E⊥. E∥ exhibits nonmonotonic dependence on the chain length of the linear alkyl spacer molecules, which would first decrease and plateau but then increase again. This is likely due to the competition of the bond strength and structural distortion in the inorganic layer, the relative fraction of the soft organic spacers, and the interfacial mechanical coupling associated with the interdigitation of the alkyl chains. The mechanical anisotropy of 2D HOIPs, marked by E∥/E⊥, shows wide tunability based on structural composition, particularly for iodide-based 2D HOIPs. Our results provide valuable insights into the structure-property relationships regarding the mechanical anisotropy and in-plane mechanical behaviors of 2D HOIPs, which can guide the materials design and device optimization to achieve required mechanical performance in 2D HOIP-based applications.

17.
J Am Chem Soc ; 143(18): 7069-7080, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905231

RESUMO

Hybrid halide perovskites consisting of corner-sharing metal halide octahedra and small cuboctahedral cages filled with counter cations have proven to be prominent candidates for many high-performance optoelectronic devices. The stability limits of their three-dimensional perovskite framework are defined by the size range of the cations present in the cages of the structure. In some cases, the stability of the perovskite-type structure can be extended even when the counterions violate the size and shape requirements, as is the case in the so-called "hollow" perovskites. In this work, we engineered a new family of 3D highly defective yet crystalline "hollow" bromide perovskites with general formula (FA)1-x(en)x(Pb)1-0.7x(Br)3-0.4x (FA = formamidinium (FA+), en = ethylenediammonium (en2+), x = 0-0.44). Pair distribution function analysis shed light on the local structural coherence, revealing a wide distribution of Pb-Pb distances in the crystal structure as a consequence of the Pb/Br-deficient nature and en inclusion in the lattice. By manipulating the number of Pb/Br vacancies, we finely tune the optical properties of the pristine FAPbBr3 by blue shifting the band gap from 2.20 to 2.60 eV for the x = 0.42 en sample. A most unexpected outcome was that at x> 0.33 en incorporation, the material exhibits strong broad light emission (1% photoluminescence quantum yield (PLQY)) that is maintained after exposure to air for more than a year. This is the first example of strong broad light emission from a 3D hybrid halide perovskite, demonstrating that meticulous defect engineering is an excellent tool for customizing the optical properties of these semiconductors.

18.
J Am Chem Soc ; 143(6): 2523-2536, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33534580

RESUMO

Two-dimensional (2D) hybrid organic-inorganic halide perovskites are a preeminent class of low-cost semiconductors whose inherent structural tunability and attractive photophysical properties have led to the successful fabrication of solar cells with high power conversion efficiencies. Despite the observed superior stability of 2D lead iodide perovskites over their 3D parent structures, an understanding of their thermochemical profile is missing. Herein, the calorimetric studies reveal that the Ruddlesden-Popper (RP) series, incorporating the monovalent-monoammonium spacer cations of pentylammonium (PA) and hexylammonium (HA): (PA)2(MA)n-1PbnI3n+1 (n = 2-6) and (HA)2(MA)n-1PbnI3n+1 (n = 2-4) have a negative enthalpy of formation, relative to their binary iodides. In contrast, the enthalpy of formation for the Dion-Jacobson (DJ) series, incorporating the divalent and cyclic diammonium cations of 3- and 4-(aminomethyl)piperidinium (3AMP and 4AMP respectively): (3AMP)(MA)n-1PbnI3n+1 (n = 2-5) and (4AMP)(MA)n-1PbnI3n+1 (n = 2-4) have a positive enthalpy of formation. In addition, for the (PA)2(MA)n-1PbnI3n+1 family of materials, we report the phase-pure synthesis and single crystal structure of the next member of the series (PA)2(MA)5Pb6I19 (n = 6), and its optical properties, marking this the second n = 6, bulk member published to date. Particularly, (PA)2(MA)5Pb6I19 (n = 6) has negative enthalpy of formation as well. Additionally, the analysis of the structural parameters and optical properties between the examined RP and DJ series offers guiding principles for the targeted design and synthesis of 2D perovskites for efficient solar cell fabrication. Although the distortions of the Pb-I-Pb equatorial angles are larger in the DJ series, the significantly smaller I···I interlayer distances lead to overall smaller band gap values, in comparison with the RP series. Our film stability studies on the RP and DJ perovskites series reveal consistent observations with the thermochemical findings, pointing out to the lower extrinsic stability of the DJ materials in ambient air.

19.
Adv Mater ; 33(8): e2006010, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475209

RESUMO

Low ionic migration is required for a semiconductor material to realize stable high-performance X-ray detection. In this work, successful controlled incorporation of not only methylammonium (MA+ ) and cesium (Cs+ ) cations, but also bromine (Br- ) anions into the FAPbI3 lattice to grow inch-sized stable perovskite single crystal (FAMACs SC) is reported. The smaller cations and anions, comparing to the original FA+ and I- help release lattice stress so that the FAMACs SC shows lower ion migration, enhanced hardness, lower trap density, longer carrier lifetime and diffusion length, higher charge mobility and thermal stability, and better uniformity. Therefore, X-ray detectors made of the superior FAMACs SCs show the highest sensitivity of (3.5 ± 0.2) × 106 µC Gyair -1 cm-2 , about 29 times higher than the latest record of 1.22 × 105 µC Gyair -1 cm-2 for polycrystalline MAPbI3 wafer under the same 40 keV X-ray radiation. Furthermore, the FAMACs SC X-ray detector shows a low detection limit of 42 nGy s-1 , stable dark current, and photocurrent response. Finally, it is demonstrated that high contrast X-ray imaging is realized using the FAMACs SC detector. The effective triple-cation mixed halide strategy and the high crystalline quality make the present FAMACs SCs promising for next-generation X-ray imaging systems.

20.
Angew Chem Int Ed Engl ; 60(1): 268-273, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32926532

RESUMO

We present an effective approach to favorably modify the electronic structure of PbSe using Ag doping coupled with SrSe or BaSe alloying. The Ag 4d states make a contribution to in the top of the heavy hole valence band and raise its energy. The Sr and Ba atoms diminish the contribution of Pb 6s2 states and decrease the energy of the light hole valence band. This electronic structure modification increases the density-of-states effective mass, and strongly enhances the thermoelectric performance. Moreover, the Ag-rich nanoscale precipitates, discordant Ag atoms, and Pb/Sr, Pb/Ba point defects in the PbSe matrix work together to reduce the lattice thermal conductivity, resulting a record high average ZTavg of around 0.86 over 400-923 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA