Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
RSC Adv ; 14(19): 13044-13052, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655466

RESUMO

The creation of free-standing lipid membranes has been so far of remarkable interest to investigate processes occurring in the cell membrane since its unsupported part enables studies in which it is important to maintain cell-like physicochemical properties of the lipid bilayer, that nonetheless depend on its molecular composition. In this study, we prepare pore-spanning membranes that mimic the composition of plasma membranes and perform force spectroscopy indentation measurements to unravel mechanistic insights depending on lipid composition. We show that this approach is highly effective for studying the mechanical properties of such membranes. Furthermore, we identify a direct influence of cholesterol and sphingomyelin on the elasticity of the bilayer and adhesion between the two leaflets. Eventually, we explore the possibilities of imaging in the unsupported membrane regions. For this purpose, we investigate the adsorption and movement of a peripheral protein, the fibroblast growth factor 2, on the complex membrane.

2.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558422

RESUMO

RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.


Assuntos
Proteína DEAD-box 58 , Receptores Imunológicos , Transdução de Sinais , Viroses , Linhagem Celular , Receptores Imunológicos/imunologia , Proteína DEAD-box 58/imunologia , Viroses/imunologia
3.
Trends Biochem Sci ; 47(8): 699-709, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490075

RESUMO

In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Complexo de Golgi , Animais , Transporte Biológico , Membrana Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Mamíferos , Transporte Proteico
4.
Elife ; 112022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348113

RESUMO

Fibroblast growth factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse subclasses consisting of syndecans, perlecans, glypicans, and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Glipicanas , Membrana Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glipicanas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos
5.
Cell Rep ; 24(1): 20-26, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972781

RESUMO

The RNA-binding protein Scp160p is the yeast homolog of the conserved vigilin protein family. These proteins influence a variety of nuclear and cytoplasmic functions. One of Scp160p's reported roles is to increase translation elongation efficiency in a manner related to codon usage. Thus, it can affect translation speed and co-translational folding of nascent peptides. We used polyglutamine (polyQ) reporters to assess Scp160p's effect on protein synthesis and observed that, in the absence of Scp160p, aggregation of polyQ is reduced and toxicity is abolished. We additionally took a proteomic approach and analyzed the impact of Scp160p on the aggregation of endogenous proteins under normal growth conditions. In the absence of Scp160p, aggregation of many Q/N-rich proteins was reduced. Because aggregation mediated by these regions can be important for the proteins' functions, Scp160p may affect many processes via aggregation of Q/N-rich proteins.


Assuntos
Peptídeos/metabolismo , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Códon/genética , Proteína Huntingtina/metabolismo , Mutação/genética , Peptídeos/toxicidade , Biossíntese de Proteínas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA