Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(6): 674-677, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38050452

RESUMO

Two-electron oxidation of a NiIIPh(PCP) pincer complex initiates phosphine ligand insertion, generating an η6-arylphosphonium moiety coordinated to NiII. The reaction is fully reversible under reducing conditions. X-ray crystallography, NMR/EPR spectroscopy, electrochemistry, and DFT calculations support the proposed Ni-C-P bond reorganization mechanisms, which access oxidation states from Ni0 to NiIV.

2.
J Am Chem Soc ; 145(39): 21263-21272, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738111

RESUMO

The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.

3.
Chemistry ; 29(17): e202203835, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36581566

RESUMO

The reliable self-assembly of microporous metal-phosphonate materials remains a longstanding challenge. This stems from, generally, more coordination modes for the functional group allowing more dense structures, and stronger bonding driving less crystalline products. Here, a novel orthogonalized aryl-phosphonate linker, 1,3,5-tris(4'-phosphono-2',6'-dimethylphenyl) benzene (H6 L3) has been used to direct formation of open frameworks. The peripheral aryl rings of H6 L3 are orthogonalized relative to the central aromatic ring giving a tri-cleft conformation of the linker in which small aromatic molecules can readily associate. When coordinated to magnesium ions, a series of porous crystalline metal-organic, and hydrogen-bonded metal-organic frameworks (MOFs, HMOFs) are formed (CALF-41 (Mg), HCALF-42 (Mg), -43 (Mg)). While most metal-organic frameworks are tailored based on choice of metal and linker, here, the network structures are highly dependent on the inclusion and structure of the guest aromatic compounds. Larger guests, and a higher stoichiometry of metal, result in increased solvation of the metal ion, resulting in networks with connectivities increasingly involving hydrogen-bonds rather than direct phosphonate coordination. Upon thermal activation and aromatic template removal, the materials exhibit surface areas ranging from 400-600 m2 /g. Self-assembly in the absence of aromatic guests yields mixtures of phases, frequently co-producing a dense 3-fold interpenetrated structure (1). Interestingly, a series of both more porous (530-900 m2 /g), and more robust solids is formed by complexing with trivalent metal ions (Al, Ga, In) with aromatic guest; however, these are only attainable as microcrystalline powders. The polyprotic nature of phosphonate linkers enables structural analogy to the divalent analogues and these are identified as CALF-41 analogues. Finally, insights to the structural transformations during metal ion desolvation in this family are gained by considering a pair of structurally related Co materials, whose hydrogen-bonded (HCALF-44 (Co)) and desolvated (CALF-44 (Co)) coordination bonded networks were fully structurally characterized.

4.
Chem Commun (Camb) ; 58(93): 12963-12966, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36322000

RESUMO

We report a rare redox-active Mn0 metalloradical [Mn(CO)3(Ph2B(tBuNHC)2)]- (NHC = N-heterocyclic carbene) with countercations [K(2.2.2)crypt]+, [Na(2.2.2)crypt]+, or [Li(DME)(12-crown-4)]+ (DME = 1,2-dimethoxyethane), all characterized via single crystal X-ray diffraction. Cyclic voltammograms reveal solvation-dependent MnI/0 redox potentials that are modeled using the Born equation.


Assuntos
Compostos Heterocíclicos , Compostos Heterocíclicos/química , Estrutura Molecular , Estereoisomerismo , Ligantes , Modelos Moleculares , Oxirredução
5.
J Am Chem Soc ; 144(28): 12632-12637, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786956

RESUMO

The scission of a C(sp3)-H bond to form a new metal-alkyl bond is a fundamental step in coordination chemistry and catalysis. However, the extent of C-H bond weakening when this moiety interacts with a transition metal is poorly understood and quantifying this phenomenon could provide insights into designing more efficient C-H functionalization catalysts. We present a nickel complex with a robust adamantyl reporter ligand that enables the measurement of C-H acidity (pKa) and bond dissociation free energy (BDFE) for a C(sp3)-H agostic interaction, showing a decrease in pKa by dozens of orders of magnitude and BDFE decrease of about 30 kcal/mol upon coordination. X-ray crystallographic data is provided for all molecules, including a distorted square planar NiIII metalloradical and "doubly agostic" NiII(κ2-CH2) complex.


Assuntos
Metais , Níquel , Catálise , Cristalografia por Raios X , Ligantes , Níquel/química
6.
Chem Commun (Camb) ; 58(49): 6946-6949, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35640262

RESUMO

Reaction of NacNacGa with azide N3SiMe3 results in the generation of a transient imide NacNacGa(NSiMe3) that can cleave unactivated sp3 C-H and sp2 C-H bonds of different substrates, affording gallium amides. Pyridine, cyclohexanone, ethyl acetate, DMSO, and triethylphosphine oxide were activated in this process producing corresponding gallium amides. All new compounds were characterised by multinuclear NMR and X-ray diffraction.

7.
Dalton Trans ; 50(45): 16613-16619, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34748621

RESUMO

Reduction of phosphorus dichloride 6, supported by the diaryloxyphenyl group (OCO) featuring two bulky phenoxy wingtips, by PMe3, generates a reactive intermediate that behaves as a base-stabilized phosphinidene (OCO)P (5). Warming up a solution of this species in toluene to room temperature results in trimerization to give the isolable cyclic triphosphine [(OCO)P]3, whereas in situ trapping with 2,3-dimethylbutadiene-1,3 afforded a 3,4-dimethylphospholene-3. Investigation of the reduction of 6 by the phosphine PMe3 by NMR led to the observation of a persistent species between -10 °C and 10 °C. A DFT study of this process suggests that this compound cannot be the proposed phosphinidene 5, and is more likely the diphosphine (OCO)ClP-PCl(OCO) (12). Attempted reduction of 5 by the bulky carbene IPr resulted in unusual electrophilic substitution in the carbene olefin backbone by the chlorophosphinyl group.

8.
Chemistry ; 27(64): 16021-16027, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34550623

RESUMO

Oxidative addition represents a critical elementary step in myriad catalytic transformations. Here, the importance of thoughtful ligand design cannot be overstated. In this work, we report the intermolecular activation of iodobenzene (PhI) at a coordinatively saturated 18-electron [Ni0 (diphosphine)2 ] complex bearing a Lewis acidic secondary coordination sphere. Whereas alkyl-substituted diphosphine complexes of Group 10 are known to be unreactive in such reactions, we show that [Ni0 (P2 BCy 4 )2 ] (P2 BCy 4 =1,2-bis(di(3-dicyclohexylboraneyl)-propylphosphino)ethane) is competent for room-temperature PhI cleavage to give [NiII (P2 BCy 4 )(Ph)(I)]. This difference in oxidative addition reactivity has been scrutinized computationally - an outcome that is borne out in ring-opening to provide the reactive precursor - for [Ni0 (P2 BCy 4 )2 ], a "boron-trapped" 16-electron κ1 -diphosphine Ni(0) complex. Moreover, formation of [NiII (P2 BCy 4 )(Ph)(I)] is inherent to the P2 BCy 4 secondary coordination sphere: treatment of the Lewis adduct, [Ni0 (P2 BCy 4 )2 (DMAP)8 ] with PhI provides [NiII (P2 BCy 4 )2 (DMAP)8 (I)]I via iodine-atom abstraction and not a [NiII (Ph)(I)(diphosphine)] compound - an unusual secondary sphere effect. Finally, the reactivity of [Ni0 (P2 BCy 4 )2 ] with 4-iodopyridine was surveyed, which resulted in a pyridyl-borane linked oligomer. The implications of these outcomes are discussed in the context of designing strongly donating, and yet labile diphosphine ligands for use in a critical bond activation step relevant to catalysis.

9.
Dalton Trans ; 50(36): 12440-12447, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34397061

RESUMO

Cobalt hydrides are known to mediate a number of important chemical transformations including proton (H+), hydride (H-), and hydrogen-atom (H˙) transfer. Central to the tunability of such frameworks is judicious ligand design, which offers the flexibility to alter fundamental properties relevant to reactivity. Herein, we report the preparation of one such cobalt(III) hydride: [Cp*CoIII(P2BCy4)(H)]BPh4 (Cp* = C5Me5-, P2BCy4 = 1,2-bis(di(3-dicyclohexylborane)propylphosphino)ethane) that is encircled by a boron-based Lewis-acidic secondary coordination sphere. The structure of this species is supported by synchrotron-radiation crystallography, evidencing a terminal Co(III) hydride with four sp2-hybridized boranes that invite Lewis base coordination. To this end, electrochemical reactivity studies performed using [Cp*CoIII(P2BCy4)Cl]+ or an "all-akyl" model, [Cp*CoIII(dnppe)Cl]+ (dnppe = 1,2-bis(di-n-propylphosphino)ethane) with benzoic or 4-pyridylbenzoic acid show divergent responses for protonation of electrochemically-generated Co(I) to give a Co(III) hydride. For [Cp*CoIII(P2BCy4)Cl]+, this process is complex, not only involving protonation, but also engagement of the pendant borane moieties in Lewis acid/base interactions. For protonation by benzoic acid, for example, borane-benzoate contacts are substantiated by variable temperature NMR spectroscopic measurements and theoretical calculations, pointing to a cooperative Co-H/B-O bond forming process. These data are discussed in the context of designing new molecular catalysts for ligand-assisted hydrogen evolution reactivity.

10.
J Synchrotron Radiat ; 28(Pt 3): 961-969, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950004

RESUMO

A new diffraction beamline for materials science has been built at the Canadian Light Source synchrotron. The X-ray source is an in-vacuum wiggler with a 2.5 T peak magnetic field at 5.2 mm gap. The optical configuration includes a toroidal mirror, a single side-bounce Bragg monochromator, and a cylindrical mirror, producing a sub-150 µm vertical × 500 µm horizontal focused beam with a photon energy range of 7-22 keV and a flux of 1012 photons per second at the sample position. Three endstations are currently open to general users, and the techniques available include high-resolution powder diffraction, small molecule crystallography, X-ray reflectivity, in situ rapid thermal annealing, and SAXS/WAXS. The beamline design parameters, calculated and measured performance, and initial experimental results are presented to demonstrate the capabilities for materials science.

11.
Inorg Chem ; 60(1): 37-41, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33355442

RESUMO

Ligand design represents a central tenet of synthetic chemistry, wherein simple modification can lead to major differences in reactivity. Herein, we describe the preparation of two bis(diphosphino)nickel(II) hydride complexes that contain eight pendant boranes in their secondary coordination sphere, [Ni(H)(P2BR4)2]+ (R = Cy or Mes; Mes = 2,4,6-trimethylphenyl). Divergent reactivity of the cyclohexyl analogue toward the [NAD]+ model, 3-acetyl-N-benzylpyridinium bromide ([BNAcP]Br), is underscored. While [Ni(H)(P2BCy4)2]+ undergoes rapid hydride transfer, the related species [Ni(H)(dnppe)2]+ [dnppe = 1,2-bis(di-n-propylphosphino)ethane] and adduct [Ni(H)(P2BCy4)2(DMAP)8]+ (DMAP = 4-N,N-dimethylaminopyridine) exhibit no such reactivity. This borane-appended nickel(II) hydride distinguishes itself from its "all-alkyl" cousins and provides future opportunities for the design of [Ni(H)(diphosphine)2]+ reagents for hydride transfer.

12.
Acta Crystallogr D Struct Biol ; 76(Pt 7): 630-635, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627736

RESUMO

The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines dedicated to macromolecular crystallography: CMCF-ID and CMCF-BM. After the first experiments were conducted in 2006, the facility has seen a sharp increase in usage and has produced a significant amount of data for the Canadian crystallographic community. Upgrades aimed at increasing throughput and flux to support the next generation of more demanding experiments are currently under way or have recently been completed. At CMCF-BM, this includes an enhanced monochromator, automounter software upgrades and a much faster detector. CMCF-ID will receive a major upgrade including a new undulator, a new monochromator and new optics to stably focus the beam onto a smaller sample size, as well as a brand-new detector.


Assuntos
Cristalografia por Raios X/instrumentação , Desenho de Equipamento , Substâncias Macromoleculares/química , Software , Canadá
13.
J Am Chem Soc ; 142(12): 5852-5861, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32119541

RESUMO

The germylone dimNHCGe (5, dimNHC = diimino N-heterocyclic carbene) was successfully prepared via the reduction of the germanium cation [dimNHCGeCl]+ with KC8. The molecular structure of 5 was unambiguously established by both NMR spectroscopy and single-crystal X-ray diffraction. The reactivity of 5 was investigated, revealing that it undergoes oxidative addition of HCl, CH3I, and PhI, accompanied by an unusual migration of the H, Me, and Ph groups from germanium to the carbene ligand. Related chemistry was also observed with C5F5N, which results in the migration of the fluorinated pyridine moiety to the carbene ligand. Compound 5 also undergoes cycloaddition with tetrachloro-o-benzoquinone to afford a Ge(IV) adduct.

14.
IUCrdata ; 5(Pt 3): x200318, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36339484

RESUMO

Crystals of the dimethyl sulfoxide (DMSO) solvate of [1-9-NαC]-linusorb B3 (Cyclo-linopeptide A; CLP-A; C57H84N9O9·C2H6OS), a cyclic polypeptide were obtained following peptide extraction and purification from flaxseed oil. There are four intramolecular N-H⋯O hydrogen bonds. In the crystal, the mol-ecules are linked in chains along the a axis by N-H⋯O hydrogen bonds. Each DMSO O atom accepts a hydrogen bond from an NH group at the Phe6 location in the CLP-A mol-ecule.

15.
Chemistry ; 26(1): 206-211, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31559656

RESUMO

Reaction of NacNacAl (NacNac=[DippNC(Me)CHC(Me)NDipp]- ) with one equivalent of benzophenone affords a ketylate species NacNacAl(η2 (C,O)-OCPh2 ) that undergoes easy cyclization reactions with unsaturated substrates. The scope of substrates included benzophenone, aldimine (PhNC(Ph)H), quinoline, phenyl nitrile, trimethylsilyl azide, and a saturated cyclic thiourea. The latter substrate reacted by an unusual C-N cleavage that left the C=S functionality intact. The new products were characterized by NMR spectroscopy and X-ray diffraction analysis.

16.
Angew Chem Int Ed Engl ; 58(50): 18102-18107, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31643119

RESUMO

In situ oxidation of the GaI compound NacNacGa by either N2 O or pyridine oxide results in the generation of a labile monomeric oxide, NacNacGa(O), which can easily cleave the C-H bonds of aliphatic and aromatic substrates featuring good donor sites. The products of this reaction are gallium organyl hydroxides. DFT calculations show that these reactions start with the formation of NacNac-Ga(O)(L) adducts, the oxo ligand of which can easily abstract protons from nearby C-H bonds, even for sp2 -hybridized carbon centers. Aliphatic amines do not enter this reaction for kinetic reasons, presumably because of the unfavorable sterics.

17.
Inorg Chem ; 58(13): 8665-8672, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194533

RESUMO

The reactivity of the gallium(I) compound NacNacGa (4) to a variety of unsaturated compounds has been studied. Whereas 4 proved surprisingly unreactive toward olefins, ketones, guanidines, and thioureas, it reacts with isocyanates and carbodiimides to furnish the products of coupling of two heterocumulenes. With isothiocyanate, the C═S cleavage occurs, leading to the dimer (NacNacGa)2(µ-S)(µ-CNPh) and the cyclization product NacNacGa(S2C═NPh). These compounds were characterized by multinuclear NMR spectroscopy and X-ray crystal structure analyses. Oxidative addition of S═PPh3 occurs at elevated temperatures and results in the known dimer [NacNacGa(µ-S)]2.

18.
J Am Chem Soc ; 141(2): 1045-1053, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30582892

RESUMO

Overcoming the brittleness of metal-organic frameworks (MOFs) is a challenge for industrial applications. To increase the mechanical strength, MOFs have been blended with polymers to form composites. However, this also brings challenges, such as integration and integrity of MOF in the composite, which can hamper the selectivity of gas separations. In this report, an "all MOF" material with mechanical flexibility has been prepared by covalent cross-linking of metal-organic polyhedra (MOPs). The ubiquitous Cu24 isophthalate MOP has been decorated with a long alkyl chain having terminal alkene functionalities so that MOPs can be cross-linked via olefin metathesis using Grubbs second generation catalyst. Different degrees of cross-linked MOP materials have been obtained by varying the amount of catalyst in the reaction. Rheology of these structures with varying number of cross-links was performed to assess the cross-link density and its homogeneity throughout the sample. The mechanical properties were further investigated by the nanoindentation method, which showed increasing hardness with higher cross-link density. Thus, this strategy of cross-linking MOPs with covalent flexible units allows us to create MOFs of increasing mechanical strength while retaining the MOP cavities.

19.
J Am Chem Soc ; 140(47): 16094-16105, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30398331

RESUMO

In reactions of significance to alternative energy schemes, metal catalysts are needed to overcome kinetically and thermodynamically difficult processes. Often, high-oxidation-state, high-energy metal oxo intermediates are proposed as mediators in elementary steps involving O-O bond cleavage and formation, but the mechanisms of these steps are difficult to study because of the fleeting nature of these species. Here we utilized a novel dianionic pentadentate ligand system that enabled a detailed mechanistic investigation of the protonation of a cobalt(III)-cobalt(III) peroxo dimer, a known intermediate in oxygen reduction catalysis to hydrogen peroxide. It was shown that double protonation occurs rapidly and leads to a low-energy O-O bond cleavage step that generates a Co(III) aquo complex and a highly reactive Co(IV) oxyl cation. The latter was probed computationally and experimentally implicated through chemical interception and isotope labeling experiments. In the absence of competing chemical reagents, it dimerizes and eliminates dioxygen in a step highly relevant to O-O bond formation in the oxygen evolution step in water oxidation. Thus, the study demonstrates both facile O-O bond cleavage and formation in the stoichiometric reduction of O2 to H2O with 2 equiv of Co(II) and suggests a new pathway for selective reduction of O2 to water via Co(III)-O-O-Co(III) peroxo intermediates.

20.
Chem Commun (Camb) ; 54(14): 1722-1725, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29299547

RESUMO

Mixed linker metal-organic polyhedra (MOPs) with polar and non-polar groups on the same MOP have been synthesized. This yields two types of MOPs, one where the ligands are evenly and symmetrically distributed over each polyhedron, as confirmed crystallographically and the other where respective groups segregate. The segregation is confirmed by the amphiphile-like behavior of the latter MOP in different polarity solvents, as seen through transmission electron microscopy (TEM) even though the anchor points of the functional groups are ∼10 Šapart on the MOP surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA