Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1405597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983846

RESUMO

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Assuntos
Complemento C1q , Endometriose , Neovascularização Patológica , Endometriose/metabolismo , Endometriose/imunologia , Endometriose/patologia , Endometriose/genética , Complemento C1q/genética , Complemento C1q/metabolismo , Humanos , Feminino , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Endométrio/imunologia , Endométrio/metabolismo , Endométrio/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células Cultivadas , Adulto , Proliferação de Células
2.
Front Immunol ; 13: 957224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177036

RESUMO

SARS-CoV-2 is a devastating virus that induces a range of immunopathological mechanisms including cytokine storm, apoptosis, inflammation and complement and coagulation pathway hyperactivation. However, how the infection impacts pregnant mothers is still being worked out due to evidence of vertical transmission of the SARS-CoV-2, and higher incidence of pre-eclampsia, preterm birth, caesarian section, and fetal mortality. In this study, we assessed the levels of the three main receptors of SARS-CoV-2 (ACE2, TMPRSS2 and CD147) in placentae derived from SARS-CoV-2 positive and negative mothers. Moreover, we measured the effects of Spike protein on placental cell lines, in addition to their susceptibility to infection. SARS-CoV-2 negative placentae showed elevated levels of CD147 and considerably low amount of TMPRSS2, making them non-permissive to infection. SARS-CoV-2 presence upregulated TMPRSS2 expression in syncytiotrophoblast and cytotrophoblast cells, thereby rendering them amenable to infection. The non-permissiveness of placental cells can be due to their less fusogenicity due to infection. We also found that Spike protein was capable of inducing pro-inflammatory cytokine production, syncytiotrophoblast apoptosis and increased vascular permeability. These events can elicit pre-eclampsia-like syndrome that marks a high percentage of pregnancies when mothers are infected with SARS-CoV-2. Our study raises important points relevant to SARS-CoV-2 mediated adverse pregnancy outcomes.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Receptores Virais , Enzima de Conversão de Angiotensina 2 , COVID-19/complicações , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Permeabilidade , Placenta/metabolismo , Placenta/virologia , Pré-Eclâmpsia/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/virologia , Nascimento Prematuro/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Trofoblastos
3.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680575

RESUMO

The loss of skin integrity has always represented a major challenge for clinicians dealing with dermal defects, such as ulcers (diabetic, vascular and chronic), postoncologic resections (i.e., radical vulvectomy) or dermatologic disorders. The introduction in recent decades of acellular dermal matrices (ADMs) supporting the repair and restoration of skin functionality represented a significant step toward achieving clean wound repair before performing skin grafts. Hard-to-heal ulcers generally depend on local ischemia and nonadequate vascularization. In this context, one possible innovative approach could be the prevascularization of matrices with vessel-forming cells (inosculation). This paper presents a comparative analysis of the most widely used dermal templates, i.e., Integra® Bilayer Matrix Wound Dressing, PELNAC®, PriMatrix® Dermal Repair Scaffold, Endoform® Natural Dermal Template, and Myriad Matrix®, testing their ability to be colonized by human adult dermal microvascular endothelial cells (ADMECs) and to induce and support angiogenesis in vitro and in vivo. By in vitro studies, we demonstrated that Integra® and PELNAC® possess superior pro-adhesive and pro-angiogenetic properties. Animal models allowed us to demonstrate the ability of preseeded ADMECs on Integra® to promote the engraftment, integration and vascularization of ADMs at the site of application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA