Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 299(2): 102851, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587767

RESUMO

Misfolded proteins are recognized and degraded through protein quality control (PQC) pathways, which are essential for maintaining proteostasis and normal cellular functions. Defects in PQC can result in disease, including cancer, cardiovascular disease, and neurodegeneration. The small ubiquitin-related modifiers (SUMOs) were previously implicated in the degradation of nuclear misfolded proteins, but their functions in cytoplasmic PQC are unclear. Here, in a systematic screen of SUMO protein mutations in the budding yeast Saccharomyces cerevisiae, we identified a mutant allele (Smt3-K38A/K40A) that sensitizes cells to proteotoxic stress induced by amino acid analogs. Smt3-K38A/K40A mutant strains also exhibited a defect in the turnover of a soluble PQC model substrate containing the CL1 degron (NES-GFP-Ura3-CL1) localized in the cytoplasm, but not the nucleus. Using human U2OS SUMO1- and SUMO2-KO cell lines, we observed a similar SUMO-dependent pathway for degradation of the mammalian degron-containing PQC reporter protein, GFP-CL1, also only in the cytoplasm but not the nucleus. Moreover, we found that turnover of GFP-CL1 in the cytoplasm was uniquely dependent on SUMO1 but not the SUMO2 paralogue. Additionally, we showed that turnover of GFP-CL1 in the cytoplasm is dependent on the AAA-ATPase, Cdc48/p97. Cellular fractionation studies and analysis of a SUMO1-GFP-CL1 fusion protein revealed that SUMO1 promotes cytoplasmic misfolded protein degradation by maintaining substrate solubility. Collectively, our findings reveal a conserved and previously unrecognized role for SUMO1 in regulating cytoplasmic PQC and provide valuable insights into the roles of sumoylation in PQC-associated diseases.


Assuntos
Proteólise , Proteína SUMO-1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
2.
mBio ; 13(5): e0254322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197088

RESUMO

COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on global public health, emphasizing the importance of understanding innate immune mechanisms and cellular restriction factors that cells can harness to fight viral infections. The multimembrane-spanning zinc metalloprotease ZMPSTE24 is one such restriction factor. ZMPSTE24 has a well-characterized proteolytic role in the maturation of prelamin A, precursor of the nuclear scaffold protein lamin A. An apparently unrelated role for ZMPSTE24 in viral defense involves its interaction with the interferon-inducible membrane proteins (IFITMs), which block virus-host cell fusion by rigidifying cellular membranes and thereby prevent viral infection. ZMPSTE24, like the IFITMs, defends cells against a broad spectrum of enveloped viruses. However, its ability to protect against coronaviruses has never been examined. Here, we show that overexpression of ZMPSTE24 reduces the efficiency of cellular infection by SARS-CoV-2 Spike-pseudotyped lentivirus and that genetic knockout or small interfering RNA-mediated knockdown of endogenous ZMPSTE24 enhances infectivity. We further demonstrate a protective role for ZMPSTE24 in a Spike-ACE2-dependent cell-cell fusion assay. In both assays, a catalytic dead version of ZMPSTE24 is equally as protective as the wild-type protein, indicating that ZMPSTE24's proteolytic activity is not required for defense against SARS-CoV-2. Finally, we demonstrate by plaque assays that Zmpste24-/- mouse cells show enhanced infection by a genuine coronavirus, mouse hepatitis virus (MHV). This study extends the range of viral protection afforded by ZMPSTE24 to include coronaviruses and suggests that targeting ZMPSTE24's mechanism of viral defense could have therapeutic benefit. IMPORTANCE The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has underscored the importance of understanding intrinsic cellular components that can be harnessed as the cell's first line of defense to fight against viral infection. Our paper focuses on one such protein, the integral membrane protease ZMPSTE24, which interacts with interferon-inducible transmembrane proteins (IFITMs). IFITMs interfere with virus entry by inhibiting fusion between viral and host cell membranes, and ZMPSTE24 appears to contribute to this inhibitory activity. ZMPSTE24 has been shown to defend cells against several, but not all, enveloped viruses. In this study, we extend ZMPSTE24's reach to include coronaviruses, by showing that ZMPSTE24 protects cells from SARS-CoV-2 pseudovirus infection, Spike protein-mediated cell-cell fusion, and infection by the mouse coronavirus MHV. This work lays the groundwork for further studies to decipher the mechanistic role of ZMPSTE24 in blocking the entry of SARS-CoV-2 and other viruses into cells.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Humanos , Camundongos , Animais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , Pandemias , Lamina Tipo A , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Interferente Pequeno , Internalização do Vírus , Vírus da Hepatite Murina/genética , Antivirais/farmacologia , Células Gigantes , Metaloproteases , Interferons , Zinco
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197292

RESUMO

Prelamin A is a farnesylated precursor of lamin A, a nuclear lamina protein. Accumulation of the farnesylated prelamin A variant progerin, with an internal deletion including its processing site, causes Hutchinson-Gilford progeria syndrome. Loss-of-function mutations in ZMPSTE24, which encodes the prelamin A processing enzyme, lead to accumulation of full-length farnesylated prelamin A and cause related progeroid disorders. Some data suggest that prelamin A also accumulates with physiological aging. Zmpste24-/- mice die young, at ∼20 wk. Because ZMPSTE24 has functions in addition to prelamin A processing, we generated a mouse model to examine effects solely due to the presence of permanently farnesylated prelamin A. These mice have an L648R amino acid substitution in prelamin A that blocks ZMPSTE24-catalyzed processing to lamin A. The LmnaL648R/L648R mice express only prelamin and no mature protein. Notably, nearly all survive to 65 to 70 wk, with ∼40% of male and 75% of female LmnaL648R/L648R mice having near-normal lifespans of 90 wk (almost 2 y). Starting at ∼10 wk of age, LmnaL648R/L648R mice of both sexes have lower body masses than controls. By ∼20 to 30 wk of age, they exhibit detectable cranial, mandibular, and dental defects similar to those observed in Zmpste24-/- mice and have decreased vertebral bone density compared to age- and sex-matched controls. Cultured embryonic fibroblasts from LmnaL648R/L648R mice have aberrant nuclear morphology that is reversible by treatment with a protein farnesyltransferase inhibitor. These novel mice provide a model to study the effects of farnesylated prelamin A during physiological aging.


Assuntos
Lamina Tipo A/metabolismo , Longevidade , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Progéria/genética , Animais , Sítios de Ligação , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Camundongos , Mutação , Fenótipo , Prenilação
4.
J Biol Chem ; 296: 100165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33293369

RESUMO

The integral membrane zinc metalloprotease ZMPSTE24 is important for human health and longevity. ZMPSTE24 performs a key proteolytic step in maturation of prelamin A, the farnesylated precursor of the nuclear scaffold protein lamin A. Mutations in the genes encoding either prelamin A or ZMPSTE24 that prevent cleavage cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS) and related progeroid disorders. ZMPSTE24 has a novel structure, with seven transmembrane spans that form a large water-filled membrane chamber whose catalytic site faces the chamber interior. Prelamin A is the only known mammalian substrate for ZMPSTE24; however, the basis of this specificity remains unclear. To define the sequence requirements for ZMPSTE24 cleavage, we mutagenized the eight residues flanking the prelamin A scissile bond (TRSY↓LLGN) to all other 19 amino acids, creating a library of 152 variants. We also replaced these eight residues with sequences derived from putative ZMPSTE24 cleavage sites from amphibian, bird, and fish prelamin A. Cleavage of prelamin A variants was assessed using an in vivo yeast assay that provides a sensitive measure of ZMPSTE24 processing efficiency. We found that residues on the C-terminal side of the cleavage site are most sensitive to changes. Consistent with other zinc metalloproteases, including thermolysin, ZMPSTE24 preferred hydrophobic residues at the P1' position (Leu647), but in addition, showed a similar, albeit muted, pattern at P2'. Our findings begin to define a consensus sequence for ZMPSTE24 that helps to clarify how this physiologically important protease functions and may ultimately lead to identifying additional substrates.


Assuntos
Lamina Tipo A/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Mutação , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
PLoS One ; 15(12): e0239269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315887

RESUMO

The integral membrane zinc metalloprotease ZMPSTE24 plays a key role in the proteolytic processing of farnesylated prelamin A, the precursor of the nuclear scaffold protein lamin A. Failure of this processing step results in the accumulation of permanently farnesylated forms of prelamin A which cause the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS), as well as related progeroid disorders, and may also play a role in physiological aging. ZMPSTE24 is an intriguing and unusual protease because its active site is located inside of a closed intramembrane chamber formed by seven transmembrane spans with side portals in the chamber permitting substrate entry. The specific features of prelamin A that make it the sole known substrate for ZMPSTE24 in mammalian cells are not well-defined. At the outset of this work it was known that farnesylation is essential for prelamin A cleavage in vivo and that the C-terminal region of prelamin A (41 amino acids) is sufficient for recognition and processing. Here we investigated additional features of prelamin A that are required for cleavage by ZMPSTE24 using a well-established humanized yeast system. We analyzed the 14-residue C-terminal region of prelamin A that lies between the ZMPSTE24 cleavage site and the farnesylated cysteine, as well 23-residue region N-terminal to the cleavage site, by generating a series of alanine substitutions, alanine additions, and deletions in prelamin A. Surprisingly, we found that there is considerable flexibility in specific requirements for the length and composition of these regions. We discuss how this flexibility can be reconciled with ZMPSTE24's selectivity for prelamin A.


Assuntos
Lamina Tipo A/metabolismo , Membranas/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Zinco/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Cisteína/metabolismo , Proteínas de Membrana/metabolismo , Prenilação/fisiologia , Leveduras/metabolismo
6.
Methods ; 157: 47-55, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625386

RESUMO

The nuclear lamins A, B, and C are intermediate filament proteins that form a nuclear scaffold adjacent to the inner nuclear membrane in higher eukaryotes, providing structural support for the nucleus. In the past two decades it has become evident that the final step in the biogenesis of the mature lamin A from its precursor prelamin A by the zinc metalloprotease ZMPSTE24 plays a critical role in human health. Defects in prelamin A processing by ZMPSTE24 result in premature aging disorders including Hutchinson Gilford Progeria Syndrome (HGPS) and related progeroid diseases. Additional evidence suggests that defects in prelamin A processing, due to diminished ZMPSTE24 expression or activity, may also drive normal physiological aging. Because of the important connection between prelamin A processing and human aging, there is increasing interest in how ZMPSTE24 specifically recognizes and cleaves its substrate prelamin A, encoded by LMNA. Here, we describe two humanized yeast systems we have recently developed to examine ZMPSTE24 processing of prelamin A. These systems differ from one another slightly. Version 1.0 is optimized to analyze ZMPSTE24 mutations, including disease alleles that may affect the function or stability of the protease. Using this system, we previously showed that some ZMPSTE24 disease alleles that affect stability can be rescued by the proteasome inhibitor bortezomib, which may have therapeutic implications. Version 2.0 is designed to analyze LMNA mutations at or near the ZMPSTE24 processing site to assess whether they permit or impede prelamin A processing. Together these systems offer powerful methodology to study ZMPSTE24 disease alleles and to dissect the specific residues and features of the lamin A tail that are required for recognition and cleavage by the ZMPSTE24 protease.


Assuntos
Lamina Tipo A/genética , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Progéria/genética , Envelhecimento/genética , Envelhecimento/patologia , Bortezomib/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Humanos , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/genética , Mutação , Progéria/patologia , Inibidores de Proteassoma/farmacologia , Saccharomyces cerevisiae/genética
7.
Dis Model Mech ; 11(7)2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794150

RESUMO

The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a 'humanized yeast system' to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability.


Assuntos
Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Mutação de Sentido Incorreto/genética , Progéria/genética , Alelos , Motivos de Aminoácidos , Vias Biossintéticas , Humanos , Lamina Tipo A/biossíntese , Proteínas de Membrana/química , Metaloendopeptidases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Canais de Translocação SEC/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
8.
G3 (Bethesda) ; 6(7): 1853-66, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27172186

RESUMO

Cellular protein quality control (PQC) systems selectively target misfolded or otherwise aberrant proteins for degradation by the ubiquitin-proteasome system (UPS). How cells discern abnormal from normal proteins remains incompletely understood, but involves in part the recognition between ubiquitin E3 ligases and degradation signals (degrons) that are exposed in misfolded proteins. PQC is compartmentalized in the cell, and a great deal has been learned in recent years about ER-associated degradation (ERAD) and nuclear quality control. In contrast, a comprehensive view of cytosolic quality control (CytoQC) has yet to emerge, and will benefit from the development of a well-defined set of model substrates. In this study, we generated an isogenic "degron library" in Saccharomyces cerevisiae consisting of short sequences appended to the C-terminus of a reporter protein, Ura3 About half of these degron-containing proteins are substrates of the integral membrane E3 ligase Doa10, which also plays a pivotal role in ERAD and some nuclear protein degradation. Notably, some of our degron fusion proteins exhibit dependence on the E3 ligase Ltn1/Rkr1 for degradation, apparently by a mechanism distinct from its known role in ribosomal quality control of translationally paused proteins. Ubr1 and San1, E3 ligases involved in the recognition of some misfolded CytoQC substrates, are largely dispensable for the degradation of our degron-containing proteins. Interestingly, the Hsp70/Hsp40 chaperone/cochaperones Ssa1,2 and Ydj1, are required for the degradation of all constructs tested. Taken together, the comprehensive degron library presented here provides an important resource of isogenic substrates for testing candidate PQC components and identifying new ones.


Assuntos
Citosol/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteólise , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Genes Reporter , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Science ; 344(6180): 208-11, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24723613

RESUMO

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Assuntos
Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Haploinsuficiência , Humanos , Farmacogenética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
10.
Science ; 340(6136): 1100-6, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23723238

RESUMO

The mTOR complex 1 (mTORC1) pathway promotes cell growth in response to many cues, including amino acids, which act through the Rag guanosine triphosphatases (GTPases) to promote mTORC1 translocation to the lysosomal surface, its site of activation. Although progress has been made in identifying positive regulators of the Rags, it is unknown if negative factors also exist. Here, we identify GATOR as a complex that interacts with the Rags and is composed of two subcomplexes we call GATOR1 and -2. Inhibition of GATOR1 subunits (DEPDC5, Nprl2, and Nprl3) makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits (Mios, WDR24, WDR59, Seh1L, and Sec13) suppresses mTORC1 signaling, and epistasis analysis shows that GATOR2 negatively regulates DEPDC5. GATOR1 has GTPase-activating protein (GAP) activity for RagA and RagB, and its components are mutated in human cancer. In cancer cells with inactivating mutations in GATOR1, mTORC1 is hyperactive and insensitive to amino acid starvation, and such cells are hypersensitive to rapamycin, an mTORC1 inhibitor. Thus, we identify a key negative regulator of the Rag GTPases and reveal that, like other mTORC1 regulators, Rag function can be deregulated in cancer.


Assuntos
Aminoácidos/metabolismo , Proteínas de Transporte/metabolismo , Lisossomos/enzimologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias/enzimologia , Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas Ativadoras de GTPase , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Mutação , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
11.
J Mol Biol ; 402(2): 388-98, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20655927

RESUMO

The highly conserved Rag family GTPases have a role in reporting amino acid availability to the TOR (target of rapamycin) signaling complex, which regulates cell growth and metabolism in response to environmental cues. The yeast Rag proteins Gtr1p and Gtr2p were shown in multiple independent studies to interact with the membrane-associated proteins Gse1p (Ego3p) and Gse2p (Ego1p). However, mammalian orthologs of Gse1p and Gse2p could not be identified. We determined the crystal structure of Gse1p and found it to match the fold of two mammalian proteins, MP1 (mitogen-activated protein kinase scaffold protein 1) and p14, which form a heterodimeric complex that had been assigned a scaffolding function in mitogen-activated protein kinase pathways. The significance of this structural similarity is validated by the recent identification of a physical and functional association between mammalian Rag proteins and MP1/p14. Together, these findings reveal that key components of the TOR signaling pathway are structurally conserved between yeast and mammals, despite divergence of sequence to a degree that thwarts detection through simple homology searches.


Assuntos
Sequência Conservada , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Mamíferos , Proteínas de Membrana , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência
12.
Science ; 327(5964): 425-31, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20093466

RESUMO

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Assuntos
Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Computacional , Duplicação Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Aptidão Genética , Redes e Vias Metabólicas , Mutação , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
13.
Science ; 322(5906): 1369-73, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18974315

RESUMO

Nuclear pore complexes (NPCs) facilitate nucleocytoplasmic transport. These massive assemblies comprise an eightfold symmetric scaffold of architectural proteins and central-channel phenylalanine-glycine-repeat proteins forming the transport barrier. We determined the nucleoporin 85 (Nup85)*Seh1 structure, a module in the heptameric Nup84 complex, at 3.5 angstroms resolution. Structural, biochemical, and genetic analyses position the Nup84 complex in two peripheral NPC rings. We establish a conserved tripartite element, the ancestral coatomer element ACE1, that reoccurs in several nucleoporins and vesicle coat proteins, providing structural evidence of coevolution from a common ancestor. We identified interactions that define the organization of the Nup84 complex on the basis of comparison with vesicle coats and confirmed the sites by mutagenesis. We propose that the NPC scaffold, like vesicle coats, is composed of polygons with vertices and edges forming a membrane-proximal lattice that provides docking sites for additional nucleoporins.


Assuntos
Vesículas Revestidas/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Evolução Molecular , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Mol Cell ; 19(6): 753-64, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16168371

RESUMO

Endoplasmic reticulum (ER) quality control mechanisms monitor the folding of nascent secretory and membrane polypeptides. Immature molecules are actively retained in the folding compartment whereas proteins that fail to fold are diverted to proteasome-dependent degradation pathways. We report that a key pathway of ER quality control consists of a two-lectin receptor system consisting of Yos9p and Htm1/Mnl1p that recognizes N-linked glycan signals embedded in substrates. This pathway recognizes lumenally oriented determinants of soluble and membrane proteins. Yos9p binds directly to substrates to discriminate misfolded from folded proteins. Substrates displaying cytosolic determinants can be degraded independently of this system. Our studies show that mechanistically divergent systems collaborate to guard against passage and accumulation of misfolded proteins in the secretory pathway.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Proteínas de Transporte/genética , Catepsina A , Proteínas de Saccharomyces cerevisiae/genética
15.
J Cell Biol ; 169(1): 73-82, 2005 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15809311

RESUMO

The endoplasmic reticulum (ER) maintains an environment essential for secretory protein folding. Consequently, the premature transport of polypeptides would be harmful to the cell. To avert this scenario, mechanisms collectively termed "ER quality control" prevent the transport of nascent polypeptides until they properly fold. Irreversibly misfolded molecules are sorted for disposal by the ER-associated degradation (ERAD) pathway. To better understand the relationship between quality control and ERAD, we studied a new misfolded variant of carboxypeptidase Y (CPY). The molecule was recognized and retained by ER quality control but failed to enter the ERAD pathway. Systematic analysis revealed that a single, specific N-linked glycan of CPY was required for sorting into the pathway. The determinant is dependent on the putative lectin-like receptor Htm1/Mnl1p. The discovery of a similar signal in misfolded proteinase A supported the generality of the mechanism. These studies show that specific signals embedded in glycoproteins can direct their degradation if they fail to fold.


Assuntos
Catepsina A/metabolismo , Retículo Endoplasmático/fisiologia , Glicoproteínas/metabolismo , Dobramento de Proteína , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Catepsina A/genética , Retículo Endoplasmático/genética , Glicoproteínas/genética , Glicosilação , Manosidases/genética , Manosidases/metabolismo , Polissacarídeos , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Biol Cell ; 14(7): 2756-67, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857862

RESUMO

The accumulation of aberrantly folded proteins can lead to cell dysfunction and death. Currently, the mechanisms of toxicity and cellular defenses against their effects remain incompletely understood. In the endoplasmic reticulum (ER), stress caused by misfolded proteins activates the unfolded protein response (UPR). The UPR is an ER-to-nucleus signal transduction pathway that regulates a wide variety of target genes to maintain cellular homeostasis. We studied the effects of ER stress in budding yeast through expression of the well-characterized misfolded protein, CPY*. By challenging cells within their physiological limits to resist stress, we show that the UPR is required to maintain essential functions including protein translocation, glycosylation, degradation, and transport. Under stress, the ER-associated degradation (ERAD) pathway for misfolded proteins is saturable. To maintain homeostasis, an "overflow" pathway dependent on the UPR transports excess substrate to the vacuole for turnover. The importance of this pathway was revealed through mutant strains compromised in the vesicular trafficking of excess CPY*. Expression of CPY* at levels tolerated by wild-type cells was toxic to these strains despite retaining the ability to activate the UPR.


Assuntos
Catepsina A/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Catepsina A/genética , Retículo Endoplasmático/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glicosilação , Mutação , Biossíntese de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA